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ABSTRACT 

Cables, overhead electrical conductors, and ropes are flexible structural assemblies made out of a central core and number 

of wires which are twisted together to form a complex helical structure. In the majority, cables are subjected to axial 

loading primarily, followed by the associated twisting. Depending upon the application, they are additionally loaded in 

bending also. The mechanical behavior of the cables can be predicted by various mathematical models reported in the 

literature. The mathematical model can predict the overall global behavior of the cable well. However, the local behavior 

of the cable must be included to have intricate realistic studies. In this paper, an attempt is made to predict the response of 

the cable considering all the local effects under axial loading. A core with a single layer of six wires is modelled using the 

helical rod concept and its mechanical behavior is investigated by means of Finite Element Analysis (FEA). The effect of 

axial loading on the cable is proposed to be studied as a function of various cable axial strains. The core-wire and the 

wire-wire contact mode of the cable assembly have been considered with due consideration of the contact forces and the 

associated frictional effects. The reduction in cable stiffness has been studied under various slip modes. The analytical and 

FEA results are validated with experimental tests on a single-layered transmission line conductor. 
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INTRODUCTION 

Cables are made of helically wound wires and have a wide range of engineering applications. These are used as 

conductors in overhead electrical power transmission lines, cables in electrical substations, support elements in 

suspension, cable-stayed bridges, guyed towers, as wire rope in material handling equipment and other related 

lifting devices. Thecables are made of a straight central core assembly and several concentric layers of wires 

helically wound over the core with alternating lay angles and with the same or different materials. The wire ropes 

are the assembly of stranded cables consisting of a central strand and a few strands twisted and helically wound 

over the central core in one and many alternating layers. The loading on such cable assemblies is generally the axial 

pull or tension and torsion. The cable assemblies are subjected to bending loads, additionally when they are under 

transverse vibration as in overhead electrical transmission lines or when they are passed around pulleys/sheaves in 

material handling or hoisting/lifting applications. However, since the base load on all the cable assemblies is the 

axial tension, most of the analysis schemes concentrate on the axial loading first and super impose the effects of 
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other loading later. Based on the geometrical arrangement of the wires and core, three types of contacts can emerge 

(Figure1). Ifthe wireswith in the strands are touching the core and the neighbouring wires, it is called as combined 

contact(figure 1 a), and if the contact is established between the core and the wires alone but not with wire to wire,then it is 

called as radial contact (figure 1 b);If the contact is found to exist between wires in the same layer only and not with the 

core, then it is called as Lateral/Hoop contact (figure 1 c).  

 
Figure 1: a) Combined Contact b) Radial Contact c) Lateral Contact. 

The nature of the contacts between the wire and the core, the extent of the frictional forces generated and the 

associated slip/movement of the wires at the contact interfaces contribute to the axial stiffness of the cable assembly at that 

loading condition. Two extreme behaviors of the stranded cable assembly exist -i) the monolithic behavior, wherein all the 

wires in the cable behave as a single welded unit, ii) the loose wire behavior, wherein all the wires behave individually or 

independently.The former assumption leads to a higher or maximum cable stiffness, owing to the presence of infinite 

friction between the wires and the latter loose wire assumption leads to the lowest or minimum cable stiffness, owing to the 

complete absence of friction among the wires. But in reality, the actual cable behavior is decided by the stiffness value, 

lying in the broader range depending on the amount of friction present at the wire interfaces. Though various mathematical 

models have been developed for predicting the stiffness of the strand, most of the models fail to capture the realistic cases 

of interactionof the wires in the strand. Hence, a detailed literature survey had been undertaken in this direction and the 

salient research works are presented.  

Costello(Costello, 1983) had developed the basic mechanics relations for an axially loaded strand under core wire 

radial contact mode and obtained a solutions in the elastic range. The cable was treated as an assembly of curved rods and 

the strand equilibrium equations were obtained from the individual wire forces and moments based on the assumption of 

infinite friction at the core wire interfaces. This yielded maximum value for the axial stiffness of the cable. Costello’s 

theoretical results were found to tally with the detailed experiments carried out by Utting & Jones(Utting & Jones, 1987a, 

1987b) on single layered steel strands under axial loading with various end restraints. The research contributions of 

Costello(Costello, 1990) were compiled in a monograph/book form which became the base line work in cable analysis and 

had been adopted as a bench mark reference by many researchers in this area.  

Since, the cable assembly is quite complex in modelling and analysis, particularly, when it is to deal with the 

contact and friction phenomenon, the recent researchers have adopted finite element modeling techniques to give a fair 

representation of the behaviour and flexibility in handling the variations, as an alternative to the numerical solution of the 

naturallynonlinear equations. Chiang(Chiang, 1996)characterized a single layered cable and studied its axial stiffness at the 

cable ends and at the middle cross section by considering six parameters- radius of core and helical wire, helix angle, 
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strand length, contact conditions at core-helical wire under two sets of boundary conditions i.e.- fixed-fixed and fixed-free. 

The interaction of the six parameters on the axial stress variations was studied by FEM and design of experiments. The 

axial stiffness was evaluated for core-wire contact strand with infinite friction or perfect adhesive contact and the finite 

element analysis results and design of experiments agreedreasonably. 

Jiang(W. G. Jiang, Yao, & Walton, 1999)adopted a finite element model to explain the global behaviour of an 

axially loaded single layeredstrand in the core-wire radial contact mode to include the local effects of tension, shear, 

bending, torsion, radial contact and friction. The axial stiffness results showed a good agreement with Costello(Costello, 

1990)elastic theoryand also with the experimental results of Utting and Jones(Utting & Jones, 1987a) in the elastic range 

where there is no relative movement at the core wire interface. However, the effects of the local forces at the contact 

interference were not considered. 

Elata et al(Elata, Eshkenazy, & Weiss, 2004)proposed a model to evaluate the mechanical response of a wire rope 

with an independent wire rope core subjected to axial tension and torsion. The wireswere assumed to yield a fiber 

response, completely neglecting the bending and torsion stiffness effects. However, the model considered the double helix 

configuration of the individual wire in the wire rope. Two specific multistrand constructions – 6 × 36 IWRC rotating rope 

of 14 mm diameter and a 18 × 7 IWRC non rotating rope of 14 mm diameter were modelled simulated and tested. The 

predicted mechanical response was compared with its experimental measurements in a tension-torsion machine. The rope 

stiffness matrix coefficients predicted by the proposed model were found to be little higher than the experimental results. 

Two extreme cases of friction- unlimited friction between adjacent wires and fully lubricated arrangement with no friction 

among the wires were studied.  

Jiang et al(Wen Guang Jiang, Warby, & Henshall, 2008)extended their earlier study on single layered cable by 

considering the combined contact of the helical wires, touching among themselves and also touching the central core in the 

undeformed configuration. As this had become a statically indeterminate problem, FEM was used to solve it. Three 

dimensional solid and linear isoparametric brick element were used for discretization. All the contact interfaces were 

treated with no relative sliding and the complete structural analysis was studied with a basic sector that involves 1/6 of the 

complete cross section. The predicted FEM results of the axial force and torque agreed with that of Costello in the linear 

range. The response analysis included the local contact deformation at all the wire interfaces resulting in radial deformation 

and change of helix radius. When a cyclic loading analysis was performed with inclusion of friction a hysteretic behaviour 

had been observed.  

Usabiaga et al(Usabiaga, Ezkurra, Madoz, & Pagalday, 2008)introduced new theoretical method for modelling 

wire rope subjected to axial tension and torsion. The method was based on the beam assumptions and accounted the double 

helix wires, based on curved rod theory. The wire interfaces were treated unlubricated and no relative sliding between 

adjacent wires was permitted. A basic 18 mm- 7 × 7 WSC strand steel rope was studied with regular and Lang lay 

construction. The global response of axial stiffness shows good agreement with test results of Costello(Costello, 1990), 

while torsional stiffness results showed a variation due to the consideration of refined double helix expression as against 

Costello model. 

Stanova et al(Stanova, Fedorko, Fabian, & Kmet, 2011)have developed mathematical model to generate single, 

multilayer strands and wire ropes, considering the single helix configuration of wires in the strand and double helix 

configuration arrangement of the strand to form wire ropes. The parametric equations were developed to account the nature 
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of the lay arrangement and the generation of the strand, ropes in Part 1 of the paper. The geometric parametric equations 

were implemented in CATIA V5 and 3D modelling of single and multilayer strands were created and analysed through 

ABAQUAS/Explicit Software for axial tension loads. Eight noded linear brick elements with three degree of freedom per 

node were used for mesh generation. The surface to surface contact was established between wires in the same layer and 

that with adjacent layers with Coulomb friction law with a friction coefficient of 0.2. Fixed-free end boundary conditions 

were adopted. The theoretical results of axial stiffness and FEM results were found to lie within an error of 8.5 % when the 

strands axial strain was varied from 0 to 0.008. 

Ivan Argatov(Argatov, 2011)formulated refined the discrete model for a simple wire rope strand to evaluate its 

axial response by accounting its transverse contraction through Poisson’seffect and wire flattering due to contact forces on 

the wires. The nonlinear contact deformation phenomenon was treated as a friction less unilateral plain strain problem 

using asymptotic equations. All the stiffness matrix elements were obtained for radial and combined contact model and 

compared with experimental data and FEM simulations. Frictional effects were neglected in this model.  

The various cable modelling techniques are reviewed and presented in a comprehensive form by Spak et al(Spak, 

Agnes, & Inman, 2013)along with their limitations. 

Kastratovic et al(Kastratović, Vidanović, Bakić, & Rašuo, 2014)carried numerical analysis on a 1 × 19stainless 

steel strand and a 7 × 19 IWS sling rope through finite element analysis. Two types of contacts i.e bounded and friction 

were investigated for fixed-free end condition. The combined contact mode was assumed to exist and the cable was 

analysed for its axial stiffness. The FEM results were compared with that of Costello and found to have been in close 

agreement up to a strain value of 0.008 in the elastic range for the strain values greater than 0.008 the FEM results differ 

from Costello as plastic behaviour was observed due to the frictional nonlinearcharacteristics.  

Foti et al(Foti & de Luca di Roseto, 2016)adopted a new formulation for modelling the elastic plastic behaviour of 

the metallic strand subjected to axial tension and torsional loads. Simple unique axial constitutive equations were derived 

considering the internal structure of the strand and plasticity effects were taken into account. The finite element model 

developed to consider these variations had given reasonably close agreements with the analytical and experimental results. 

Based on the literature survey, it can be observed that the modelling of cable is very complex due to the nature of 

the behaviour of the helical wire during loading and deformed states. The cable behaviour is highly dependent on the 

interaction of the wires which is influenced by the nature of the contacts and the magnitude of the contact forces that are 

set in.  

This aspect has not been adequately handled in the modelling by the researchers to predict the cable behavior. The 

modelling of the cable assembly is to sufficiently explain the contact phenomenon- the contact locations, the contact forces 

and the contact deformations that occur on the wire, the role of friction force at the wire contact interface and the 

associated slip/movement of the wires. Though very few researchers have addressed the contact and friction phenomenon, 

they have not handled all the contact possibilities or have partially attempted them, since the conventional mathematical 

procedures are quite involved with the high level of complexity. 

Hence, this paper aims to address the contact phenomenon with a more inclusive approach of handling the slips 

and frictional parameters parallelly.The simultaneous initiation of slip in the combined contact mode has been studied and 

the axial stiffness of the cable is evaluated in lines of Costello(Costello, 1990) for a single layer bi metallic ACSR Dog 
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conductor. The phenomenon is attempted throughFiniteElement Analysis procedures and the loss of stiffness at different 

stages of sliding is evaluated as a function of axial strain. The FEM results are compared with that of Costello(Costello, 

1990) and with the experimental results already published. It is hoped that the analysis will be useful to the transmission 

line utilities as it addresses the realistic conditions on cable behaviour mathematical model. 

MATHEMATICAL MODEL 

A mathematical model is developed to predict the strand axial stiffness as a function of applied cable axial strain ∈ and 

strand rotation �. A single layered strand under the application of an axial force F and a twisting moment M is shown in 

figure 2a along with its cross-section representation in figure 2b. The strand cross section consists of central core of radius 

 ! and six helical wires of radius  ", the center of which is located at a distance r from the strand centre known as the 

helix radius. The centre line of each helical wire is inclined to the strand axis at an angle #, known as the helix angle. 

The applied cable axial force F and strand moment M induce forces and moments in any element of the curved 

helical wire, the distribution of which is shown in figure 3. The cable strand axes are indicated by $%,$&,$'($'being along 

the length of the strand). Any point in the helical wire can be represented by a system of moving axes x, y and z known as 

normal, binormal and tangential axes with z being directed along the axial direction of the helical wire. The wire end forces 

and moments along the normal, bi normal and axial directions are denoted by (,(), *and +, +), ,	respectively. To 

maintain equilibrium each wire is acted upon with distributed forces and moments $, ., / and 0,0), 1 along the respective 

wire directions. 

 
Figure2: a) Strand Geometry, b) Strand Cross Section Area. 

 

 
Figure 3:Forces and Moments Acting on Helical Wire. 
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Figure 4 shows the developed geometry of a helical wire before and after loading. 

 
Figure 4: Helical Wire Geometry. 

The, following relations can be obtained from the trigonometry (figure 4) as 

 ℎ = 4 sin8∝: (1) 

 ;< = 4 cos8∝: (2) 

As per small deformation theory,theabove equations, the change in strand length ?ℎ and change in swept angle ?; 

can be written as  

 ?ℎ = 4 cos8∝: ? ∝ + sin8∝: ?4           (3) 

 ?; = −84 sin8∝: <⁄ :? ∝ +8cos8∝: <⁄ :?4 (4) 

From the above relations, change in the helix angle and change in wire length can be written as  

 C? ∝?4 D = E8cos8∝: 4⁄ : −8< sin8∝: 4⁄ :FGH8∝: <IJF8∝: K E?ℎ?;K (5) 

Letting 
LM
M = N& LP

P = �as the strand axial strain and strand rotational strain respectively, the following relations 

can be written for equation 5.  

 ? ∝ = FGH ∝ cos ∝ 8N − �: (6) 

 ?4 = 4	8FGH&8∝: × N + IJF&8∝: × �: (7) 

The basic kinematic relation of the bi normal curvature and twist of helical wire can be written as 

 Q) = IJF& ∝<  (8) 

 R = sin8#: cos8#:<  (9) 
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It can be noted that the normal curvature of the helical wire Q is zero since the core is straight and helical wire is 

wound over it. The change in bi normal curvature and twist can be written in terms of the applied strain as follows. 

 ∆Q) = sin82#: cos8#: sin8#: × 8� − N:<  (10) 

 ∆R = 1< cos82#: sin8#: cos8#: × 8N − �: (11) 

The curvature and the twist relations of the helical wire yield the binormal bending moment +) and twisting 

moment H as follows 

 +) =	U"V"∆Q) (12) 

 , = +"W" 	∆R (13) 

Hence, the axial tension in the helical wire T can be related as  

 * = N"U"X" (14) 

where, U" , +"are the Young’s modulus and the rigidity modulus of the helical wire and X" , V" , W" are respectively 

the area, area moment of inertia and polar moment of inertia of the helical wire. 

The wire axial strain is derived by using Equation 7 as below. 

 N" = ?44 = YNFGH&8#: + �IJF&8#:Z (15) 

The wire bi normal force()can be obtained from the equilibrium equation of the helical wire as in 

Costello(Costello, 1990).  

 () = ,Q) − +)R (16) 

The net axial force [\ and twisting moment Ms along the strand axis can be obtained from the forces and moments 

of all the helical wires in a layer and that from the central straight core as under 

 [\ = ]Y*FGH8#: + () cos8#:Z + U!X!N (17) 

 \̂ = ] E,FGH8#: + +) cos8#: + *<IJF8#: − ()<FGH8#: + +!W! _?;ℎ `K (18) 

where, m is the number of helical wires in the layer of the strand and U! , +!  are the Young’s modulus and the 

rigidity modulus of the rigidity of the core and X!, W!are the area of the cross section and polar moment of inertia of the 

core wire. The above strand equilibrium equations can be expressed in a matrix form as, 

 E [\̂\K = E[∈ [∅^∈ ^∅K b
∈?;ℎ c 

(19) 
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Where, [∈, ^∅ are the cable axial stiffness and torsional stiffness coefficients and [∅ and ^∈ are cross coupling 

coefficients of tension and torsion respectively. When a pure axial load is applied along the strand axis without permitting 

the rotation of the strand, 
Ld
M = 0 and hence the axial stiffness [∈ of the strand can be obtained as, 

 

[∈ = 	] fU"X"FGH'8#: + +W<& IJF82#: FGH8#: IJFg8#: + UV FGH82#: IJF'8#:FGH&8#:<& h
+ U!X! 

 

(20) 

 

Table 1: Properties of Strand used in Example (Gnanavel B K, 2013) 
Parameters of Strand (Symbol) Value 

Radius of Core (<!: 2	]] 
Modulus of Elasticity of Core 8U!: 207000	^ij 
Radius of Helical Wire 8<M: 2	]] 
Modulus of Elasticity Helix Wire 8UM: 69000	^ij 
Lay Angle 8#°: 80	℃ 
Possion’s Ratio of Core 8�!: 0.3 
Possion’s Ratio of Helix Wire 8�mn: 0.33 
Friction Co-Efficient for Core & Wire Contact (µ) 0.65 
Friction Co-Efficient for Wire & Wire Contact (µ) 1.35 

 

FINITE ELEMENT MODEL 

A single layered bimetallic ACSR conductor strand, whose specifications are shown in Table 1, has been considered for 

the numerical computations and finite element modelling and analysis. The geometrical data of the strand yielded the cable 

cross section in the combined contact mode. Thestrand core is made by extruding the circular profile along the z-axis for 

one pitch length,Whereas, the helical wire geometry is made by extruding the circular profile over a helical path with a 

help of pitch, helix angle and helix radius.  

The CAD model of the strand is generated by AUTODESK INVENTOR and is imported into ABAQUS. The 

material properties such as Young’s modulus, Possion’s ratio and density are assigned to the model with the help of the 

software.Brick mesh element also called as hexahedron mesh (8 noded) was used for meshing the strand.This type of 

element supports large strains & deflections, creep, hyper elasticity, plasticity, stress stiffening and different types of 

frictional boundary conditions. Three different meshes are used. One is the coarser meshed model for checking the 

boundary conditions and physics. The other two are fine and finer mesh. Fine mesh has the same mesh density as in Figure 

5 a.while another mesh has a greater number of elements near the contact surface as in figure 5 b. Finer mesh mode has 

18536 mesh elements out of which 2452 elements were used to mesh the core geometry.FEManalysis has been performed 

for one pitch length only, due to the periodicity of the geometry, and to reduce the computation time and better efficiency. 
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Figure 5: Meshed model of strand a) 

INTERWIRE FRICTION, BOUNDARY CONDITIONS, AND LOADING

The movement around the strand longitudinal axis at the free end is permitted but is restrained at the fixed end. I

avoid unwinding of the wire within the same strand, entire strand end is restrained against rotation. In reality

are fixed with the help of wedges, and this condition was introduced to the FEM model by locking the strand to move on

in the axial direction (loading direction).figure 5shows the meshed model with the boundary condition incorporated in 

it.Surface to surface contact boundary condition is used here for avoiding penetration of master nodes in the slave node. 

Friction parameters were taken from Table 

Figure 6

The strand is analyzed for three cases of frictional behavior.

• A zero-friction assembly, where it is assumed that all the contact interfaces are free to slide over each other. The 

elongation of the strand is studied under an axial force in a complete state of frictionless behavior.

• The complete interfaces among the wires in the layer are behaving in a frictionless state and the contact interfaces 

between the core-wire are acted upon with the frictional resi

junction. 

• All the cable interfaces i.e. the core

resistances and the relative sliding that occurs all around.

For all the cases the strand is loaded axially in the Z direction with the central load ranging from 4000 to 12000 N 

with an increment of 2000 N and the free end elongation is obtained from the finite element model. The results of the axial 

elongation of the strand are shown in columns 3, 4 and 5 of Table
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Figure 5: Meshed model of strand a) Fine Mesh b) Finer Mesh.

INTERWIRE FRICTION, BOUNDARY CONDITIONS, AND LOADING 

The movement around the strand longitudinal axis at the free end is permitted but is restrained at the fixed end. I

avoid unwinding of the wire within the same strand, entire strand end is restrained against rotation. In reality

are fixed with the help of wedges, and this condition was introduced to the FEM model by locking the strand to move on

in the axial direction (loading direction).figure 5shows the meshed model with the boundary condition incorporated in 

it.Surface to surface contact boundary condition is used here for avoiding penetration of master nodes in the slave node. 

Table 1. An isotropic Coulomb friction has been adopted in the analysis. 

 
Figure 6:Meshed Model with Boundary Condition. 

The strand is analyzed for three cases of frictional behavior. 

friction assembly, where it is assumed that all the contact interfaces are free to slide over each other. The 

is studied under an axial force in a complete state of frictionless behavior.

The complete interfaces among the wires in the layer are behaving in a frictionless state and the contact interfaces 

wire are acted upon with the frictional resistance causing relative sliding at the core wire 

All the cable interfaces i.e. the core-wire and the wire-wire junctions in the layer are influenced by the frictional 

resistances and the relative sliding that occurs all around. 

the strand is loaded axially in the Z direction with the central load ranging from 4000 to 12000 N 

with an increment of 2000 N and the free end elongation is obtained from the finite element model. The results of the axial 

n in columns 3, 4 and 5 of Table-2 for all the three cases. 
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Fine Mesh b) Finer Mesh. 

The movement around the strand longitudinal axis at the free end is permitted but is restrained at the fixed end. In order to 

avoid unwinding of the wire within the same strand, entire strand end is restrained against rotation. In reality, both theends 

are fixed with the help of wedges, and this condition was introduced to the FEM model by locking the strand to move only 

in the axial direction (loading direction).figure 5shows the meshed model with the boundary condition incorporated in 

it.Surface to surface contact boundary condition is used here for avoiding penetration of master nodes in the slave node. 

. An isotropic Coulomb friction has been adopted in the analysis.  

friction assembly, where it is assumed that all the contact interfaces are free to slide over each other. The 

is studied under an axial force in a complete state of frictionless behavior. 

The complete interfaces among the wires in the layer are behaving in a frictionless state and the contact interfaces 

stance causing relative sliding at the core wire 

wire junctions in the layer are influenced by the frictional 

the strand is loaded axially in the Z direction with the central load ranging from 4000 to 12000 N 

with an increment of 2000 N and the free end elongation is obtained from the finite element model. The results of the axial 
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DISCUSSION OF RESULTS AND MODEL VALIDATION 

The results of the finite element analysis are compared with the numerical results of the theoretical model adopted by 

Costello and with the published experimental results of Gnanavel(Gnanavel B K, 2013). The axial stiffness of the strand, 

[∈, is evaluated from Equation 20 after accounting the geometrical and material parameters of the strand as in table 1. For 

an applied cable axial load8[\:, the axial strain8∈: can be calculated from the Equation 19. The elongation of the strand is 

obtained from the strain and geometrical length of the strand and is shown in column 2. The experimental results of 

elongation of the strand as reported in the thesis of Gnanavel(Gnanavel B K, 2013) are shown in column 6 of the table 2. 

It can be observed from the Table 2 that, the Costello theoretical model underestimates the elongation. This is due 

to the fact that cable is assumed as a solid entity where friction in the core wire is infinite making the cable more rigid. The 

friction less model adopted in the Finite Element analysis has recorded the maximum elongation due to the fact that all the 

wires are free to move making the strand model as a loose wire assembly. The results of the model where relative sliding at 

the core and wire interface is permitted register less elongation than the zero-friction complete lose wire assembly. The 

results of the combined contact model where the frictional effects at all the contact interfaces are permitted, register 

elongation close to the experimental realities.  

Table 2: Results of Axial Elongation in the Strand 

 

Costello 
Theoretical 

Results 
Finite Element Analysis Results Experimen

tal 
Results(m

m) Load(N) 
Infinite Friction 

Model(mm) 
Zero Friction 
Model(mm) 

Core-Wire Friction 
model(mm) 

Core-Wire & Wire-Wire 
Friction Model(mm) 

0 0 0 0 0 - 

2000 0.04475 0.1058 0.0856 0.06523 - 

4000 0.075115 0.140746 0.12987 0.093963 0.09507 

6000 0.112743 0.187852 0.172712 0.134078 0.13156 

8000 0.150372 0.232086 0.214823 0.173649 0.17004 

10000 0.188 0.274499 0.256871 0.213402 0.20425 

12000 0.225628 0.316072 0.298826 0.252197 0.25471 

It can be observed from the table 2 that the Costello’s axial elongation results over estimates the experimental 

values by about 13%. This can be attributed to the infinite friction assumptions at the core wire interfaces. The friction less 

model underestimates the elongation by about 37% from that of experimental ones, due to the hypothetical assumption of 

friction less interfaces. The model that accounts the frictional sliding only at the core wire interfaces underestimates the 

elongation by about 27% since, the assembly of the helical wires in the layer are completely frictionless. The FEM model 

that considers the role of interwire friction at the core-wire and at the wire-wire interfaces leading to the interaction of the 

friction sliding at all the wire interfaces registers a deviation of about 1.2% from that of experimental observations. The 

consideration of frictional sliding at all the interfaces of the cable tallies very closely with the experimental finding, thus 

validating the finite element simulation adopted in this paper. 

Figure 7 shows the plot of variation of the applied axial force and the strand elongation for the Costello and Finite 

Element models. The experimental values are also plotted against each axial load in figure 7 for reference. 
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Figure 7: Axial Force vs. Displacement Curve for Strand 

CONCLUSIONS 

The modelling of a stranded cable assembly that simultaneously handles the interaction among the core and the helical 

wire and that between all the helical wires in a layer, has been undertaken to evaluated its axial stiffness. A completely 

rigid cable where in all the wires are in a monolithic infinite friction behaviour and a total loose wire behaviour, where in 

all the wire are in a completely frictionless state are set as extreme model and the cable elongation has been studied. Finite 

element models that consider the interaction of the wires, under a state of frictional contacts at the core wire and wire-wire 

interfaces are investigated and their axial elongation results are obtained. Eight noded brick element are included for the 

representation and simulation. A single layered bi metallic ACRS overhead transmission line conductor has been 

considered for the numerical and finite element analysis. The axial stiffness of the cable assembly has been evaluated as a 

function of applied as a axial strains and the results are comparted with that of the published experimental results. It has 

been observed that the finite element modelling that considers the frictional interaction at the core-wire and wire-wire 

interfaces in the combined contact mode, tallies with the experimental results very closely, thus validating the simultaneous 

consideration of multi slip modes in the analysis.  
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