ARTIFICIAL INTELLIGENCE MACHINING PREDICTIONS BY FUZZY GUI FOR INCONEL 718 WITH PVD COATED CARBIDE CUTTING TOOL

PRAVIN P. PANDE¹ & RAJESHKUMAR U. SAMBHE²

¹Assistant Professor Department of Mechanical Engineering, Rajrshi Shahu College of Engineering Buldana, Maharashtra, India
²Professor, Department of Mechanical Engineering, Jawaharlal Darda Institute of Engineering & Technology, Yavatmal, Maharashtra, India

ABSTRACT

Inconel 718 contributes majorly out of overall nickel based alloy applications. Material characteristics like heat resistance, dimensional stability, expose to high temperature region prioritize its popularity. Since due to age hardening property and high hardness it consider under the category of difficult to cut. In this work attempt has been made to develop model by using fuzzy based artificial intelligence for the turning operation to confirm predictability against actual response outcomes.

KEYWORDS: Difficult to cut, ANFIS, Inconel 718, Nickel Alloys

Received: May 17, 2017; Accepted: Jun 02, 2017; Published: Jun 13, 2017; Paper Id.: IJMPERDJUN201731

INTRODUCTION

The Inconel 718 is a nickel based alloy most famous in aerospace application. This material is most preferred in area expose to high temperature region. The high strength-weight ratios, resistant to corrosion, longer life period, mechanical as well as thermal fatigue, thermal shock, creep and erosion makes practical priority for its application. In this paper attempt has been made to develop predictiv model by fuzzy based intelligence approach. The PVD coated carbide tool used for machining to get predictive responses. The cutting conditions analyze to minimizes cost of operation and maximize product surface quality.

MACHINING ISSUES OF INCONEL 718

The high hardness and ageing properties of the inconel 718 alloys results high temperature and stresses in the cutting zone causes flank wear, chattering and notching, has significant influence of cutting conditions of machining Ezugwu et al (1991). The machining faces high temperature stress, thick adhering layer at the tool-work interface. The chip braking is difficult since high toughness. These machining issues forms high tool wear lower material remove rate (MRR) and undesired surface quality. The induced stresses due to high cutting forces while machining, rises work hardening, surface tearing and distortion Rahman et al (1997). Choudhury et al (1998). The tendency to form a BUE in machining and the presence of hard carbide particles in microstructure deters machinability. The high speed and dry cutting is the big challenge to meet the economical machining prospective.
CONTRIBUTORS AND REVIEW IN TURNING WITH PVD COATED TOOL

The use of PVD coatings for cutting tools in the cutting of hard alloy, have major contribution in the industrial application of modern machining operations. The use of PVD coated cutting tool is the most effective alternative for improving durability and surface's strength. Most of the contributor find appealing to work on marching of Inco alloy due to its wider application but having practical machining challenges. The choice of PVD coated tool is to extend machining quality and life. PC Jindal et al [1] used PVD TiN, TiCN, and high-ionization sputtered PVD inserts. Macrostructural and mechanical properties of the coatings and substrate were characterized and were evaluated in turning of Inconel 718. The characteristics are a result of the higher hot hardness and oxidation resistance of TiAlN at the temperatures normally encountered at the tool tip during machining operations. Y Kamata et al [2] applied TiN/AlN super lattice (PVD) and TiAlN (PVD) to finish-turning. The longest tool life was attained by TiCN/Al2O3/TiN coating in wet cutting, but the surface finish was not good. A Bhatt et al [3] presents the results of an experimental investigation on the wear mechanisms of uncoated tungsten carbide (WC) and coated tools (single-layer (TiAIN) PVD, and triple-layer (TiCN/Al2O3/TiN) CVD) in oblique finish turning of Inconel 718 it was concluded that abrasive and adhesive wear were the most dominant wear mechanisms, controlling the deterioration and final failure of the WC tools.

Prengel et al [5] used different PVD coated carbide cutting tools at 61 and 76 m/min, The TiAlN-multilayer showed some advantages over the TiAlN-monolayer and TiN/TiCN/TiAlN-multilayer coating particularly at a higher speed of 76 m/min. The main failure mode in Inconel 718 machining was abrasive nose wear accompanied by plastic deformation. The notching was heavily influenced by burr formation on the uncut diameter. Coated flaking was observed early in the cut at the depth of cut region for all the coated tools tested. C Ducros [6] taken adhesion tests by multilayer PVD tool and surface topography analyses indicate better adhesion and lower roughness for CrN/TiN than for TiN/AlTiN coatings. All these coatings, especially TiN/AlTiN nano layers, favorably influence flank wear and cutting time for machining Inconel 718 in relatively severe cutting conditions.

EXPERIMENTATION

The inconel 718 round bar of Φ29mm turned with PVD coated carbide SNMG 120408 cutting tool on Gildemeister CTX 310 Eco CNC Lathe in dry environment. The chemical composition and mechanical properties of the work piece are given in Tables 1 and 2, respectively.

<table>
<thead>
<tr>
<th>Table 1: The Mechanical Properties of Inconel 718</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Melting point</td>
</tr>
<tr>
<td>Specific heat</td>
</tr>
<tr>
<td>Average coefficient of thermal expansion</td>
</tr>
<tr>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>Ultimate tensile strength</td>
</tr>
</tbody>
</table>
Artificial Intelligence Machining Predictions by Fuzzy GUI For Inconel 718 with PVD Coated Carbide Cutting Tool

Table 2: The Chemical Composition of Inconel 718

<table>
<thead>
<tr>
<th>Element</th>
<th>Ni (+Co)</th>
<th>Ti</th>
<th>Cr</th>
<th>Nb (+Ta)</th>
<th>Al</th>
<th>Fe + Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (%)</td>
<td>50-55</td>
<td>0.65-1.5</td>
<td>17-21</td>
<td>4.75-5.5</td>
<td>0.2-0.8</td>
<td>Balance</td>
</tr>
</tbody>
</table>

The machining parameters speed of 30, 50 and 60 m/min considered at cutting feed 0.1, 0.15 and 0.2 mm/rev with constant depth of cut of 0.2 mm. Machining responses discussed as surface roughness and Material removal rate.

DESIGN OF EXPERIMENT

Three level two factorial DOE is prepared with constant depth of cut. Surface roughness and material removal rate are the machining responses. The various experimental observations as in table 3.

Table 3: Machining Observations for Turning of Inconel 718

<table>
<thead>
<tr>
<th>Runs</th>
<th>Speed (m/min)</th>
<th>Feed (mm)</th>
<th>DoC (mm)</th>
<th>Ra (Actual) (µm)</th>
<th>Ra (Replicate) (µm)</th>
<th>MRR (Actual) (cm³/min)</th>
<th>MRR (Replicate) (cm³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>0.1</td>
<td>0.2</td>
<td>0.016</td>
<td>0.016</td>
<td>0.70527</td>
<td>0.77823</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.15</td>
<td>0.2</td>
<td>0.016</td>
<td>0.015</td>
<td>1.07470</td>
<td>1.18783</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.2</td>
<td>0.2</td>
<td>0.015</td>
<td>0.015</td>
<td>1.41055</td>
<td>1.61205</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0.1</td>
<td>0.2</td>
<td>0.014</td>
<td>0.014</td>
<td>1.07470</td>
<td>1.18783</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.15</td>
<td>0.2</td>
<td>0.013</td>
<td>0.013</td>
<td>1.37306</td>
<td>1.48073</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.2</td>
<td>0.2</td>
<td>0.012</td>
<td>0.012</td>
<td>2.50764</td>
<td>2.50764</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>0.1</td>
<td>0.2</td>
<td>0.012</td>
<td>0.012</td>
<td>2.50764</td>
<td>2.50764</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>0.15</td>
<td>0.2</td>
<td>0.013</td>
<td>0.012</td>
<td>2.82109</td>
<td>2.82109</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>0.2</td>
<td>0.2</td>
<td>0.012</td>
<td>0.011</td>
<td>2.82109</td>
<td>3.22411</td>
</tr>
</tbody>
</table>

Regression Analysis: Ra and MRR Versus Speed, Feed

Linear regression model prepare to find linear relationship between a Ra, MRR and predictor(s) (Speed, Feed). Normal probability correlated in figure 1 and figure 3. The counter plots plotted out, to know the contribution of machining parameters on Ra and MRR. The regression equations are:

Ra = 0.0233 - 0.000290 Speed + 0.0012 Feed + 0.000002 Speed² - 0.0333 Feed² - 0.000125 Speed*Feed

MRR = - 1.59 + 0.0350 Speed + 11.1 Feed

![Figure 1: Residual Plot for Ra.](image1)

![Figure 2: Contour Plot for Ra.](image2)
Fuzzy Intelligence Predictive Model

Fuzzy logic is an efficient way to map input characteristics to output. In this work, the concept of fuzzy approach and development of predictive ANFIS model for surface roughness response at various speed and feed condition are discussed. The MATLAB 7.0-based Graphical User Interface (GUI) has been used to develop and test for its ability in modeling for fuzzy logic. In this work, the concept of fuzzy approach and machining by Adaptive Network-based Fuzzy Inference System (ANFIS). It has been validated to be capable of testing the best variable setting of the intended model in ANFIS environment. ANFIS model developed with 35 nodes, 9 numbers of linear parameters, 18 numbers of nonlinear parameters, 27 total numbers of parameters, 18 numbers of training data pairs, and number of fuzzy rules.

Fuzzy inference is the process of formulating the mapping from a given input cutting speed, feed to an output Ra and MRR using fuzzy logic. The mapping then provides a basis from which decisions can be made, or patterns discerned. Mamdani’s fuzzy inference method is the most commonly seen fuzzy methodology. Mamdani’s method was among the first control systems built using fuzzy set theory. A membership function (MF) is a curve that defines how each point in the input space is mapped to a membership value. Figure shows initial and final membership functions for Ra and MRR.

The permutation combination for each individual response ANFS forms fuzzy rules. In the rule viewer predicted response output surface roughness for random values of input variable speed and feed observed.

- If (Speed is Low) and (Feed is Low) then Ra/MRR is out 1mf1
- If (Speed is Low) and (Feed is Medium) then Ra/MRR is out 1mf2
- If (Speed is Low) and (Feed is High) then Ra/MRR is out 1mf3
• If (Speed is Medium) and (Feed is Low) then Ra/MRR is out 1mf4
• If (Speed is Medium) and (Feed is Medium) then Ra/MRR is out 1mf4
• If (Speed is Medium) and (Feed is High) then Ra/MRR is out 1mf6
• If (Speed is High) and (Feed is Low) then Ra/MRR is out 1mf7
• If (Speed is High) and (Feed is Medium) then Ra/MRR is out 1mf8
• If (Speed is High) and (Feed is High) then Ra/MRR is out 1mf9

Table 4: Response Table and Predicted Values of Ra and MRR (PVD)

<table>
<thead>
<tr>
<th>Runs</th>
<th>Speed (m/min)</th>
<th>Feed (mm)</th>
<th>DoC (mm)</th>
<th>Ra (Actual) (µm)</th>
<th>Ra (Regression) (µm)</th>
<th>Ra (ANFIS) (µm)</th>
<th>MRR (Actual) (cm³/min)</th>
<th>MRR (Regression) (cm³/min)</th>
<th>MRR (ANFIS) (cm³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>0.10</td>
<td>0.2</td>
<td>0.0160</td>
<td>0.0158</td>
<td>0.0135</td>
<td>0.7053</td>
<td>0.5700</td>
<td>0.0750</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>0.15</td>
<td>0.2</td>
<td>0.0160</td>
<td>0.0153</td>
<td>0.0135</td>
<td>1.0747</td>
<td>1.1250</td>
<td>1.0700</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.20</td>
<td>0.2</td>
<td>0.0150</td>
<td>0.0146</td>
<td>0.0135</td>
<td>1.4106</td>
<td>1.6800</td>
<td>1.4100</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>0.10</td>
<td>0.2</td>
<td>0.0140</td>
<td>0.0130</td>
<td>0.0135</td>
<td>1.1878</td>
<td>1.2700</td>
<td>1.1900</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>0.15</td>
<td>0.2</td>
<td>0.0130</td>
<td>0.0123</td>
<td>0.0107</td>
<td>1.7361</td>
<td>1.8250</td>
<td>1.7400</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>0.20</td>
<td>0.2</td>
<td>0.0120</td>
<td>0.0115</td>
<td>0.0135</td>
<td>2.5076</td>
<td>2.3800</td>
<td>2.5100</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>0.10</td>
<td>0.2</td>
<td>0.0130</td>
<td>0.0117</td>
<td>0.0135</td>
<td>1.7361</td>
<td>1.9700</td>
<td>1.7400</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>0.15</td>
<td>0.2</td>
<td>0.0130</td>
<td>0.0109</td>
<td>0.0124</td>
<td>2.8211</td>
<td>2.5250</td>
<td>2.8200</td>
</tr>
<tr>
<td>9</td>
<td>70</td>
<td>0.20</td>
<td>0.2</td>
<td>0.0120</td>
<td>0.0100</td>
<td>0.0110</td>
<td>2.8211</td>
<td>3.0800</td>
<td>2.8200</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSIONS

The table shows the comparative assessment of actual outcomes with predictive model results of regression and ANFIS. The results of responses have good agreement with respect to trends. Figure 6 and Figure 7 show good agreement of predicted responses. The response values of machining of inconel 718 confirm the model adequacy with similar trend pattern.

Figure 6: Comparative trend Ra
Figure 7: Column chart of MRR
CONCLUSIONS

Artificial intelligence techniques now days focused on alternative for convenient and efficient technique in machining and manufacturing area. The economic trials burden can be overcome by fuzzy based inference productivity of machining response outcomes. The hard material inconel 718 difficult to machine, PVD coated carbide machining found to be suitable to estimate linear characteristics of machining.

ACKNOWLEDGEMENTS

Author thanks to COET Akola for availing facility of research laboratory and to Nashik Auto Cluster for experimentation support.

REFERENCES


