A COMPLETE OVERVIEW ON THE TRADITIONAL USES, PHYTOCONSTITUENTS, PHARMACOLOGICAL USES AND CONSERVATIONAL STRATEGIES OF Gymnemasylvestre (Retz) Schult. (ASCLEPIADACEAE)--A RARE AND VALUABLE MEDICINAL PLANT

SANTANU GUPTA
Assistant Professor, Department of Botany, Malda College, Rabindra Avenue, Malda -732101, West Bengal, India

ABSTRACT
Gymnemasylvestre (Retz) Schult. has acquired worldwide attention as the most common anti-diabetic and anti-obesity plant in recent years. The purported miracle herb, Gymnema is applied to support the management of diabetes and lower the absorption of sugar in the intestine. A number of companies are involved in the trade of Gymnemasylvestre (Retz) Schult., which supply the material either as a whole plant or leaves or leaf extract. But overexploitation and uncontrolled trade along with habitat loss made this plant quite prone to become an endangered species in the near future. So in situ propagation of the plant along with large production of the secondary metabolites is on a high. The present paper provides a suitable overview on the ethnopharmacological, pharmacological and in situ conservational strategies of Gymnemasylvestre (Retz) Schult.

KEYWORDS: Phytochemicals, Diabetes, Triterpenoids, Saponins, Micropropagation & Gymnemic acids

Received: Nov 13 2021; Accepted: Dec 03, 2021; Published: Dec 17, 2021; Paper Id.: IJBRJUN202202

INTRODUCTION
For a long time, plants are considered a valuable source of natural products for maintaining human health. Nowadays the use of phytochemicals for pharmaceutical purposes is on a high. According to the World Health organisation, medicinal plants would be the best source of drugs in the near future. Plants formed the basis of traditional medicine in the past, and have given rise to many important drugs that are still in use today. Chakra Samhita has recorded more than 200 vegetable remedies for various ailments. In India, there are more than 7000 species of medicinal plants. (Kuzuku et al 1979). Gymnemasylvestre (Retz) Schult., a vulnerable medicinal plant, is a slow growing perennial woody climber found in central and peninsular India possessing roots at nodes. Its leaves are called Gurmar in India is a characteristic sweet taste suppressing agent (Sofowara 1996) The leaves are elliptical in outline with acuminate tips. The upper surface of the leaves are glabrous and lower surface is densely tomentose. It bears flowers which bears are small axillary and with long pedicels. The calyx. is a lobular structure and the petals are light yellow in colour (Naik 1999)

ETHNOMEDICINAL VALUE
Documentation of traditional knowledge of ethnomedicinal use of plants has been considered as a high priority to support the discoveries of drugs benefitting mankind. The tribals of West Bengal hold a tremendous amount of traditional knowledge on the ethno medicinal use of Gymnemasylvestre (Retz) Schult (Das &Mondal 2021).
Traditional uses are depicted below

- The Santals of West Bengal used to chew the green leaves of this plant in the morning to keep their urine clear. (Naik 1999)
- They also use their leaves for asthma and bronchitis (Chadwick & Marsh 1994).
- They also use the leaves to treat the bite of a scorpion. According to them, it helps to nullify the toxin released by it. (Jain & Mudgal 1983).
- The root boiled with water is used in the treatment of abdominal enlargement in children. It also reduces the glandular swellings in children. (Mukherjee et al. 2006)
- The latex is used in the treatment of ulcers and wounds. (Nadkarni 1993).

PHYTOCHEMISTRY

The important phytochemical constituent of *Gymnemasylvestre* (Retz) Schult is oleane class of triterpenoids called Gymnemic acid. The individual Gymnemic acid are Saponins, which includes Gymnemic acids i-vii Gymnemosides. (Sarasan 2008). Other constituents include formic, butyric and tartaric acid, flavones, anthraquinones, resins, β-amyrin related glycosides and Stigmasterol. (Praveen & Murthy 2005).

PHARMACOLOGICAL USES

The plant shows a wide range of medicinal importance which has been briefly reviewed below.

ANTIDIABETIC PROPERTY

Several studies revealed that the ant diabetic property of *Gymnemasylvestre* (Retz) Schultis due to stimulation of insulin release and by regeneration of Langerhans islets of pancreas. Other effects of the plant extract include a prolonged hypoglycaemic effect of exogenous insulin in dogs without pancreas (Okabayashi 1990). Treatment of 27 patients with IDDM who were on insulin therapy with *Gymnemasylvestre* (Retz) Schult leaf extract showed reduced plasma glucose levels at fasting and the requirement of exogenous insulin was also reduced drastically. Possibly it helps to regenerate the c-peptide ; an integral part of insulin tertiary structure (Kang et al. 2012). Dihydroxygymnemic triacetate isolated from acetone leaf extract of *Gymnemasylvestre* (Retz) Schult was found to be a normoglycemic and hyolipidemic agent by increasing plasma glucose level (Baskaran et al. 1990). An investigation on the patients receiving 200 mg of *Gymnemasylvestre* (Retz) Schultpowder twice daily in addition to their normal doses of insulin, showed a significant decrease in mean glycosylated haemoglobin (HbA1C) from baseline to a normal level within six months (Krishna 2007).

TYPE II DIABETES RELATED COMPLICATIONS

Nitric oxide is normally produced from L-arginine by Endothelial NO synthase (eNOS) in the blood vessels of Diabetic patients. Decreased production of NO by eNOS due to glucose overload, is a major cause for diabetic related vascular complications (Persaud 1999). 10 different compounds from the leaves of *Gymnemasylvestre* (Retz) Schult such as Gymnemic Acid, GymnemaSaponins i-v, gymnemagenin, Gymnemosides A and B deacetylgnemnic acid have given positive responses with docked e-NOS enzymes using molecular docking (Ninomiya et al. 1995). The binding energy of all these compounds were all very low that indicate that this compound has a good affinity for the enzyme e NOS acting as an agonist (Chatopadhyay et al. 1993).
• SWEET TASTE SUPPRESSION

The sweet taste suppressing activity of Gymnemasylvestre (Retz) Schult. includes Gymnemic acids, Gymnema Saponins and Gurmarin (Ninomiya et al 1995). Gymnema Saponins completely inhibit the perception of sweetness by competing with receptor sites on taste buds. Gurmarin acts on the apical side of the taste cell by binding with the sweet taste receptor protein. (Reddy et al 2014).

• ANTI-OBESITY PROPERTY

One of the emerging epidemics of our country includes obesity. In general, elevated plasma level of resistin (Jaybhaye et al 2010), a cysteine rich residue secreted by the white adipose tissue, is a major cause behind obesity by causing insulin resistance. This resistin seems to be down regulated by Gymnemic acid. Currently, tea prepared from Gymnemasylvestre (Retz) Schult leaves is suggested by medical practitioners for curing obesity (Chakravarti et al 1996). It promotes the binding of carbohydrates to the receptor sites at the intestine and thus controls calories (Shigemastu et al 2001).

• HYPOLIPIDEMIC ACTIVITY

Alcoholic extract of Gymnemasylvestre (Retz) Schult leaves have shown to prevent atherosclerosis under in vitro conditions, the magnitude of which is equivalent to lipid lowering agent clofibrate (Asare-Anane 2009). An aqueous leaf extract of Gymnemasylvestre (Retz) Schult. lowers the accumulation of lipid in the liver of rats that were clinically administered high fat diet and also lowered the cholesterol in the circulating blood. (Abdul Bakrudeen et al 2006).

• CHEMOTHERAPEUTIC ACTIVITY

The methanolic extract of leaves of Gymnemasylvestre (Retz) Schult shows significant anti tumor activity. DMBA and croton oil induced tumor when treated with leaf extract of Gymnemasylvestre (Retz) Schult. showed a significant reduction in tumor incidence, tumor burden, and cumulative number of papillomas (Matthew 2014). The alcoholic extract of Gymnemasylvestre (Retz) Schult shows potent anti-cancer activity particularly in human lung carcinoma and human breast carcinoma (Krishna 2007).

• HAEMOLYTIC ACTIVITY

Triterpenesaponins bearing polar substituents on the side rings causes lysis of the erythrocyte membrane and thus releases the haemoglobin. The first step involves an irreversible interaction of oligosaccharide side chain with erythrocyte membrane followed by glycosylation, thus destroying the membrane. (Kanetkar et al 2016).

• ANTIMICROBIAL ACTIVITY

The crude ethanolic extract of Gymnemasylvestre (Retz) Schult leaves shows excellent antibacterial activity against gram positive and gram negative bacteria like Staphylococcus sp. and E.coli. The zone of inhibition in mm increased with the increased concentration of methanolic leaf extract (Chowdhury 2007).

• ANTIOXIDANT ACTIVITY

The invitro antioxidant activity of Gymnemasylvestre (Retz) Schult aqueous leaf extract against ascorbic acid as standard showed a promising result having a higher inhibitory effect as compared to that of ascorbate (Abdul et al 2009). This antioxidant activity was mainly due to the presence of flavonoids, phenols, tannins and triterpenoids. Reports are also there...
that *Gymnemasyalvestre* (Retz) Schult can increase the levels of super oxide dismutase, glutathione, and catalase. (Jain & Mudgal 1988).

- **ANTI-INFLAMMATORY ACTIVITY**

Aqueous leaf extract of *Gymnemasyalvestre* (Retz) Schult shows an elevation of liver enzymes Y- glutamy ltrans pepdisases and super oxide dismutase protecting the human body against the activity of the free radicals. In rats, anti-inflammatory effect against paw oedema induced by carraggenan. (Kishna et al 2010). are known to be controlled by *Gymnemasyalvestre* (Retz) Schult leaf extracts.

- **ANTIHELMINTHIC PROPERTY**

Parasitic infection caused by the helminths have always been a topic of concern of human health care. The ethanolic leaf extract of *Gymnemasyalvestre* (Retz) Schult have shown to exhibit significant antihelminthic property when tasted on *Pheretimaposthuma*. This is mainly due to the presence of polar and non polar groups present in the *Gymnemasyalvestre* (Retz) Schult. leaves. (Sarasan, et al 2009)

IN-SITU CONSERVATIONAL STRATEGIES

Naturally *Gymnemasyalvestre* (Retz) Schult is propagated through seeds but have a very low germination percentage owing to their short viability and scanty endosperm. In addition due to overexploitation of the plant, there is an urgency for its germplasm to be conserved (Reddy et al 2004). Due to indiscriminate collection practises their number in the natural habitat is decreasing day by day. They are fragmented in a very small sub population and are on the verge of being endangered (Chowdhury et al 1988)

- **MICROPROPAGATION**

MS medium containing BAP and NAA at.02mg/l resulted in shoot regeneration in maximum amount (Ninomiya et al 1993). However using 30 days old seedling axillary node explants incubated in MS medium supplemented with 0,01mg/l NAA, 1.0 mg/l BA, 100mg/l of citric acid resulted in a stunning 57.2% shoots to be induced. After hardening the shoots showed successful acclamatization.(Shrivastava et al 2011). However, the highest percentage of roots were reported to be induced in GS medium without any growth regulators. (Sharma et al 2010).

- **SOMATIC EMBRYOGENESIS**

Whole plant regeneration by somatic embryo formation has been achieved by callus obtained from hypocotyls, cotyledon and leaf explants from invtro raised seedlings of *Gymnemasyalvestre* (Retz) Schult.(Sarasan et al 2006). MS medium containing 0.5-5.0 μM of 2,4-D, 0.5-2.0 μM of BA and 2% (w/v) of sucrose induced embryogenic callus within 6-8 weeks after culture initiation. In the medium, globular and heart shaped embryo were obtained. Further, this medium supplemented with MS salts, B vitamins, BA and sucrose were added (Syedy et al 2014). The maturation of the embroys were found to be considerably influenced by the plant growth regulators and length of light and dark cycles. After transferring in the field the plantlets showed similar traits as that of the source plant (Pandey& Ashok 2012).

CONCLUSIONS

This article summarises the traditional and pharmaceutical uses of *Gymnemasyalvestre* (Retz) Schult. belonging to the family Asclepiadaceae. This plant contains a large number of chemicals including triterpenoids all having medicinal
properties. Gymnemic acids present in the leaves are used as potent anti diabetic properties. But due to indiscriminate collection and unregulated trade, their number in natural habitat is decreasing day by day. Habitut loss and forest clearance is another threat to the species. So insitu conservation of the plant and sustainable harvesting may protect the plant to be available in the future.

REFERENCES

3. DJ Chadwick and J Marsh (1994) Ethnobotany and the search for new drugs.,
4. Novartis Foundation Symposia, Wiley Online Library.
11. Matthew Trendowski, (2014) Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach, BiochimicaetBiophysicaActa (BBA) - Reviews on Cancer,

22. Jaybhaye and Deokule (2010) Study of Invitro seed germination and development of seedlings of Gymnema sylvestre.64-68

24. VN.Naik (1999). Flora of Marathwada, AmratPrakashan,

Impact Factor (JCC): 6.8337

NAAS Rating: 4.08

Figure 1; Gymnemasylvestre (Retz) Schult

Table 1: Systematic Position of the Plant

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Plantae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subkingdom</td>
<td>Tracheobionta</td>
</tr>
<tr>
<td>Superdivision</td>
<td>Spermatophyta</td>
</tr>
<tr>
<td>Division</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Class</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Subclass</td>
<td>Asteridae</td>
</tr>
<tr>
<td>Order</td>
<td>Gentianales</td>
</tr>
<tr>
<td>Family</td>
<td>Asclepiadaceae</td>
</tr>
<tr>
<td>Genus</td>
<td>Gymnema</td>
</tr>
<tr>
<td>Species</td>
<td>Sylvester</td>
</tr>
</tbody>
</table>