BREAST CANCER IMAGE SEGMENTATION USING EKSTRAP AND FCS ALGORITHM

DEEPSHRI HEBBALKAR¹, SMITA NAIK², ANUJ DIVKAR³, AVINKUMAR PEDNEKAR⁴

VALERIE MENEZES⁵ & SHREEDATTA SAWANT⁶

¹,²,³,⁴ B.E Students, Department of Computer Engineering, Aghnel Institute of Technology and Design, Goa, India

⁵,⁶ Assistant Professors, Department of Computer Engineering, Aghnel Institute of Technology and Design, Goa, India

ABSTRACT

Image segmentation is a process of segmenting the image into different sections. We have done this process of image segmentation using clustering. We have performed EKSTRAP and FCS Clustering Algorithms to obtain image segmentation. Then we compared the results with K Means. We noticed that, our technique of obtaining image segmentation gives better results with EKSTRAP and FCS Algorithm. Further, we use a standard classification algorithm called K Nearest Neighbors to identify which section of the image is cancerous and which is non-cancerous.

KEYWORDS: EKSTRAP & FCS Clustering Algorithms

INTRODUCTION

Breast cancer is the most prominent cancer affecting women. A breast cancer victim’s long term survival chances can be improved by prior detection. Since screening mammography is at present the main test for prior detection of breast cancer, a large number of mammograms have to be examined by a limited number of radiologists, resulting in misdiagnosis due to common human errors like visual fatigue [2].

This project provides a second opinion to the radiologist. Hence, using our project the radiologist can give an input image that is a mammogram, and from the output obtained, he/she can accurately distinguish the cancerous regions from the noncancerous regions and hence he/she will be in a better position to identify the cancerous and non-cancerous regions.

Below are some common terms used all through the paper:

Image segmentation: Is a process that divides an image into separate and distinct regions.

Clustering: A bunch of like entities is a cluster. A method of forming these clusters is known as clustering.

Classification: Is a process of sorting sections or segments of images into classes.

EKSTAP

EKSTRAP Algorithm [3] is used to find strange points. The algorithm also dwells on the effect of run time. The EKSTRAP proceeds by initially finding a minimum point by using the Euclidean distance formula [9] for all the pixels of the image. Then it finds the maximum point from the minimum point calculated. The run time...
is reduced as it finds the minimum point first and then the maximum point of the minimum point. Next it finds the strange point. If the strange point is closer to the minimum point, then the strange point is rectified by choosing a point which is in the middle of strange point and maximum point and this makes it the final strange point. However, if strange point in closer to a maximum point, than the strange point is shifted from finding a point which is in the middle of the strange point and the minimum point making the newly found out point the final strange point.

FCS

FCS Algorithm [4] takes a broad view of an EKSTRAP Algorithm to permit a point to fit into various clusters by generating a soft categorization for a given set of elements. To achieve this, the motive of hard EKS is drawn out by including fuzzy membership functions. The values of fuzzy membership functions are called memberships range from 0 to 1. Every element has a membership in each cluster. Memberships near 1 would indicate a high degree of association between the element and a cluster. Memberships near 0 implied negligible association between the element and the cluster.

The goal behind using the membership function for clustering was to yield fuzzy, c subdivisions of the dataset. Fuzzy membership functions put the data into the clusters using a parameter p that has been used as a weight apostle in the fuzzy membership function.

IMAGE SEGMENTATION

In this project, we have segmented the mammogram of a breast tissue, which we have taken as an input image. Hence the image matrix we obtained is shown in the figure below:

<table>
<thead>
<tr>
<th>Pixel Number</th>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
<th>214</th>
<th>215</th>
<th>216</th>
<th>217</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>17</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>34</td>
<td>17</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>17</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>34</td>
<td>51</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

MOTIVATION

Recently, the numbers of deaths due to breast cancer have increased. A breast cancer victim's survival chances are enhanced by prior detection. Hence, through our project we want to provide a means for early and accurate detection of breast cancer. K Means doesn't comply with huge datasets. Through our research, we found out that K Means is highly time consuming. As the size of the image increases, so does the time required to cluster. It also takes much iteration to reach to the result. EKSTRAP and FCS decrease time complexity. They also undergo a limited number of iterations.

STRATEGY USED

Image Segmentation: This is done to divide the image into different sections:

- Take the input image which is a mammogram of a breast tissue.
- Perform clustering using (K Means).
- Perform clustering using (EKSTRAP).
- Perform clustering using (FCS).
- Compare the results obtained from all the 3 Algorithms.
- Produce the output that is a segmented mammogram of a breast tissue.

Figure 1: Image Segmentation Process

Classification: It is done to assign class labels to the segmented sections of the image

- Train the data using a sample image that is a mammogram of a breast tissue.
- The output from any of the FCS is given to the KNN classifier along with the trained data.
- Final output obtained is an image where the cancerous region is clearly indicated.

Figure 2: Classification

OUTCOME OBTAINED

We first achieve image segmenting using K Means. The steps followed are same as that proposed in the strategy. The input image considered in given below:
Impact Factor (JCC): 8.8765

Figure 3: Input Image Selected to Perform K Means

The clusters obtained from the above image after applying K Means algorithm are shown below:

Figure 4: K Means Forms the Above Clusters

The image obtained after implementing K Means is as shown in the below figure. It segments the image into clusters as shown below. One cluster indicated by the color red, one indicated by the color Blue, one indicated by black, one by white, and another by yellow.

Figure 5: Output Image after Applying K Means

EKSTRAP ALGORITHM

We implement EKSTRAP on the image shown in the figure below, which is taken as the input image:
Breast Cancer Image Segmentation using Ekstrap and FCS Algorithm

Figure 6: Input Image Selected to Perform EKSTRAP

Clusters formed from the above input image after applying the EKSTRAP are shown in the figure below:

![Clusters Image]

Figure 7: EKSTRAP Forms the Above Clusters

The output image obtained after applying EKSTRAP is as shown in the below figure. It segments the image into clusters as shown below. One cluster indicated by the color red, one indicated by the color Blue, one indicated by black, one by white, and another by yellow. The output obtained precisely segments the image.

![Output Image]

Figure 8: Output Image after Applying EKSTRAP
FCS ALGORITHM

This algorithm segments the image better than the K means. It also runs faster than the K Means when a large dataset is considered. We implement FCS on the image shown in the figure below that is taken as the input image:

Clusters formed from the above input image after applying FCS are shown in the figure below:

Figure 9: Input Image Selected to Perform FCS

The output image obtained after applying FCS is as shown in the below figure. It segments the image into clusters as shown below. One cluster indicated by the color red, one indicated by the color Blue, one indicated by black, one by white, and another by yellow. The output obtained precisely segments the image.

Figure 10: FCS Forms the Above Clusters

Figure 11: Output Image after Applying FCS Clustering
Difference with Respect to K Means

The above figure clearly shows how precisely and accurately the EKSTRAP and the FCS works as compared to the K Means Clustering algorithm.

KNN CLASSIFIER

We have implemented the KNN Classifier [5] to allocate labels to the segmented sections of the image. We followed the similar steps as shown in the proposed methodology under classification.

We train the data using a sample image as given in the figure below:

Figure 13: Sample Image Taken to Train the Data
We train the data by setting the cancerous region to 1 and the noncancerous region to 0. In other words we train the image pixels according to their intensity as cancerous and noncancerous. This is shown in the below figure:

Table 2: The Trained Data as 1 (Cancerous) and 0 (Noncancerous)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>162.063</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>29.38539</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>208.8848</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>90.02361</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>16.16952</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>211.1579</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>154.4296</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>80.29887</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>14.9067</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>245.0909</td>
<td>1</td>
</tr>
</tbody>
</table>

The output obtained from training the data along with the output obtained from image segmentation using FCS is given to the KNN classifier. The KNN Classifier shows which regions are cancerous and which are not. The following figure highlights the cancerous region.

Figure 14: Output of KNN Classifier

In the above figure, the region marked in red is the cancerous region, whereas the one marked in black is the noncancerous region.
CONCLUSIONS

In this paper, we have obtained image segmentation. We have used EKSTRAP and FCS to obtain image segmentation. The results obtained from these two algorithms were compared with the results obtained from K Means. Our technique of obtaining image segmentation gives better results with EKSTRAP and FCS Algorithm. We then classified the segmented image using a KNN classifier, to indicate which sections of the image are cancerous and which are noncancerous.

REFERENCES

7. Jiawei Han and Micheline Kamber, Data Mining- Concepts and techniques, Elsevier.

10. Image database: http://peipa.essex.ac.uk/info/mias.html
