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ABSTRACT 

In this paper, low power multiplier design using Finite field multiplier using backend design is I 

investigated. Adiabatic circuits are very low power circuits compared with CMOS logic circuits, 

provided the Power Clock Generators consumes less power and mutilate all low power advantages from 

the adiabatic logic by consuming large portion of the total power in the clock generation circuitry [1, 2]. 

Also clock routing is major challenge in the adiabatic, because of routing-delay between the gates. 

Compared with the conventional CMOS implementation, this design achieves energy savings from 50% 

to 74% for clock rates ranging from 100MHz to 300MHz. 

Unlike most research involving finite field multipliers this work targets low power multiplier 

through the application of various power reduction techniques to different types of multipliers and 

comparing their power consumption among other factors, rather than comparing complexity measures 

such as gate count on area gate count is used as a starting point to choose potential architectures, namely 

, polynomial and normal basis architectures power reduction techniques employed are mainly concerned 

with architecture and logic level low power techniques, and now finite multiplier using adiabatic. They 

include supply voltage reduction. As well as in this paper I am concentrating on the heat dissipation & 

reducing the current using adiabatic logic. Reed-Solomon codes are based on finite field arithmetic 

which involves dining closed binary operations over finite sets of elements. Unfortunately, a full review 

of finite fields is beyond the scope of this.  
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INTRODUCTION 

Moore’s law describes the requirement of the transistors for VLSI design, it gives the empirical 

observation that component density and performance of integrated circuits, doubles every year, which 

was then revised to doubling every two years. With the help of the scaling rules set by Dennard, smart 

optimization can be achieved by means of timely introduction of new processing techniques in device 

structures, and materials. To overcome the power and area requirements of the computational 

complexities, the dimensions of transistors are shrunk into the deep sub-micron region and 

predominantly handled by process engineering. Driven by tremendous advances in lithography, the 65nm 
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process technology node featuring approximately 32nm transistors is in vogue right now in high volume 

production. Moreover the technology migration has become much costly for process the design in terms 

of its physical design. Developers are forced to bare the tool cost in order to achieve the low power 

requirements. The transistor cost versus lithographic tool cost is given in the silicon technology future 

road map, it is noted that transistor cost has decreased seven orders of magnitude whereas tool cost has 

increased. Thus, the alternate method or migration of process engineering is most invited.  

As a brief overview, we will start with the simplest example of a finite field which is the binary 

field consisting of the elements. Traditionally referred to as, the operations in this field are defined as 

integer addition and multiplication reduced modulo 2.We can create larger fields by extending into 

vector space leading to finite fields of size 2m.  

The field G is thus defined as a field with 2m elements each of which is a binary multiple. Using 

this definition, we can group m bits of binary data and refer to it as an element of field G. This in turn 

allows us to apply the associated mathematical  

operations of the field to encode and decode data. For our purposes, we will limit our discussion 

to the finite field. This field consists of sixteen elements and two binary operations, addition and 

multiplication. There are two alternate (but equivalent) representations for the field elements. First, all 

nonzero elements in  may be represented as powers of a primitive field element  (i.e. each nonzero 

element is of the form _n for n = 0,1, . . . 14). Second, each element has an equivalent representation as a 

binary 4-tuple.While the representation has great mathematical convenience, digital hardware prefers the 

binary 4-tuple representation. These representations are illustrated in Table 1. 

Table.1 . Canonical representation of finite field. 

 

POSITIVE FEEDBACK ADIABATIC LOGIC 

The structure of PFAL logic is shown. Two n-trees realize the logic functions. This logic family 

also generates both positive and negative outputs. The two major differences with respect to ECRL are 

that the latch is made by two pMOSFETs and two n MOSFETs, rather than by only two pMOSFETs as 

in ECRL, and that the functional blocks are in parallel with the transmission pMOSFETs. Thus the 

equivalent resistance is smaller when the capacitance needs to be charged. The ratio between the energy 

needed in a cycle and the dissipated one can be seen in figure 4. During the recovery phase, the loaded 

capacitance gives back energy to the power supply and the supplied energy decreases. 
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fig.1 shows Finite field elements from the Galois field GF(2^k) are represented as polynomials with 

binary valued coefficients, as such, multiplication in the field is defined modulo an irreducible 

polynomial of degree k-1one of the 

 

Fig.1.  Block of finite multiplier. 

 

 

Fig.2 .  Block diagram of XOR and AND logic 

     Gates.   

Multiplicands is treated in blocks of polynomials of degree n-1 so that the multiplier operates 

over T cycles where k=nT. If K is not a composite number to start with , higher order terms are added, so 

that multipliers are now constructible even when k is prime since n<k, the construction of the needed 

multiplier circuits are much simpler. Designers are now provided with an opportunity of easily trading 

off circuit speed for circuit. Complexity in an orderly and structured fashion. Fig. 2   shows is a block 

diagram of a circuit for block circuit for multiplication accordance with the logical gates XOR and AND 

gates. 
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POWER DISSIPATION IN ADIABATIC LOGIC GATES 

A limiting factor for the exponentially increasing integration of microelectronics is represented 

by the power dissipation. Though CMOS technology provides circuits with very low static power 

dissipation, during the switching operation currents are generated, due to the discharge of load 

capacitances that cause power dissipation increasing with the clock frequency. The adiabatic technique 

prevents such losses: the charge does not owes from the supply voltage to the load capacitance and then 

to ground, but it owes back to a trapezoidal or sinusoidal supply voltage and can be reused. Just losses 

due to the resistance of the switches needed for the logic operation still occur. In order to keep these 

losses small, the clock frequency has to be much lower than the technological limit. In the literature, a 

multitude of adiabatic logic families are proposed.  Each different implementation shows some particular 

advantages, but there are also some basic drawbacks for these circuits.  

The goal of this paper is to compare different adiabatic logic families and to investigate their 

robustness against technological parameter variations. For this purpose three adiabatic logic families are 

evaluated and the impact of parameter variations on the power dissipation is determined. Both intertie 

(and global) and intra-die (or local) parameter variations of different components in the same sub-circuit 

are considered. The most important factor is the threshold voltage variation, especially for sub-

micrometer processes with reduced supply voltage. This was also found for low voltage CMOS circuits, 

cf., where the fundamental yield factor was the gate delay variation (in CMOS the power dissipations not 

significantly dependent on the threshold voltage). For adiabatic circuits the timing conditions are not 

critical, because the clock frequency is particularly low, and therefore the outputs can always follow the 

clocked supply voltage. Here the yield critical requirement is the power dissipation that has a very low 

nominal value. Hence it exhibits large relative deviations due to parameter variations that can lead to the 

violation of the specifications. 

The general PFAL gate consists of a two cross coupled inver-ters and two functional blocks F 

and /F (complement of F) driven by normal and complemented inputs which realizes both normal and 

complemented outputs. Both the functional blocks implemented with n channel MOS transistors. The 

equations used to implement PFAL adder and the corresponding sum and carry implementations. 

The logical organization of conventional and adiabatic adders is constructed by the replication 

of 2 and 4, 4bit blocks for %bit and 16-bit adder, respectively. Each 4bit block may be viewed as 

consisting of a carry unit, a sum generation unit, and a sum selection unit. (In practice, the three parts are 

of course not necessarily so distinctly separated.) The carries and both types of sum bits are produced 

using look ahead functions as much as possible. The detailed logic design of this adder can be found in 

[IO]. The adiabatic adder results after the substitution of the conventional CMOS adder’s blocks with the 

corresponding adiabatic. Regarding the delay for an n-bit adiabatic carry select adder, which is 

constructed by m bit blocks (m<n), we obtain. where2t, is the delay from the computation of the partial 

sum P, and Gi and, N(t+2tinv7 with N=n/m, the delay of carry propagation through the m-bit blocks. The 

design of this adder involved re-thinking of the circuit according to the principle of the adiabatic 
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switching and no changes were held in the above equations. Also, to best of our knowledge a similar 

adiabatic conditional sum adder hasn’t been introduced until now. Finally, following similar 

substitutions, for the conditional sum adder whose structure resembles that of carry select adder, we can 

result in another low power adiabatic adder. 

MATHEMATICAL BACKGROUND  

In this Section the mathematical background used for the design of the two architectures is 

presented.  The basic GF(2k) field arithmetic is analyzed and a  correspondence with binary logic 

operations is made, for GF(2k) field is described.  

SIMULATION RESULTS  

 

Fig.3 .  AND  and  XOR function in adiabatic. 

 

Fig.4 . Result of AND and XOR function in Adiabatic. 
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Fig.5 .  Layout diagram for AND  and  XOR function in Adiabatic logic. 

 

Fig.6. Proposed Circuit AND and XOR Power Results. 

CONCLUSIONS 

The new implementation is based on the original architecture, so it can be used in both static 

CMOS and dynamic CMOS circuits. And through my architecture, I can reduce power and area 

consumption but sacrifice some timing (which can be neglected). By this implementation, I prove that 

the new architecture is really better than the traditional After reading some papers, I realize that 

improving multiplier is very difficult now because of the adiabatic. If we want to get higher performance 

we must reduce the complexity in transistor level. 
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