LINE DOUBLE DOMINATION IN GRAPHS

M. H. MUDDEBIHAL¹ & SUHAS P. GADE²

¹Department of Mathematics Gulbarga University, Gulbarga, Karnataka, India
²Department of Mathematics, Sangameshwar College, Solapur, Maharashtra, India

ABSTRACT

Let \(G = (V, E) \) be a graph. A set \(D \subseteq V \) is called a dominating set if every vertex in \(V - D \) is adjacent to at least one vertex in \(D \). The domination number \(\gamma(G) \) of \(G \) is the minimum cardinality of a minimal dominating set. A subset \(D^d \) of \(V[L(G)] \) is a double dominating set of \(L(G) \) if for every vertex \(v \in V[L(G)] \), \(|N[v] \cap D^d| \geq 2 \), that is \(v \) is in \(D^d \) and has at least one neighbour in \(D^d \) or \(v \) is in \(V[L(G)] - D^d \) and has at least two neighbours in \(D^d \). The line double domination number \(\gamma_{d}d(G) \) is the minimum cardinality among all line double dominating sets of \(L(G) \). In this paper many bounds on \(\gamma_d d(G) \) were obtained in terms of vertices, edges and other different parameters of \(G \), but not the elements of \(L(G) \), further we develop its relationship with other different domination parameters.

KEYWORDS: Line Graph, Dominating Set, Double Dominating Set, Double Domination Number

Subject Classification Number: AMS-05C69, 05C70.

1. INTRODUCTION

All graphs under consideration are finite undirected and loop-less without multiple edges. Let \(G = (V, E) \) be a graph with vertex set \(V \) and edge set \(E \). As usual \(p = |V| \) and \(q = |E| \) denote the number of vertices and edges of a graph \(G \) respectively. In general we use \(<X> \) to denote the sub-graph induced by the set of vertices \(X \) and \(N(v) \) and \(N[v] \) denote the open and closed neighbourhood of a vertex \(v \), respectively. The minimum (maximum) degree among the vertices of \(G \) is denoted by \(\delta(G), \Delta(G) \). A vertex of degree one is called an end vertex. Also \(\beta_0(G), \beta_1(G) \) is the minimum number of vertices (edges) in a maximal independent set of vertex (edge) of \(G \). \(\chi(G), \chi^*(G) \) is the minimum \(n \) for which \(G \) has an \(n \)-vertices (\(n \)-edges) colourings. A line graph \(L(G) \) is the graph whose vertices correspond to the edges of \(G \) and two vertices in \(L(G) \) are adjacent if and only if the corresponding edges in \(G \) are adjacent. We begin with some standard definitions from domination theory. Let \(G = (V, E) \) be a graph. A set \(D \) of vertices in a graph \(G \) is called a dominating set of \(G \) if every vertex in \(V - D \) is adjacent to some vertex in \(D \). The domination number of \(G \), denote by \(\gamma(G) \) is the minimum cardinality of a dominating set. A set \(D \) subset of \(V[L(G)] \) is said to be a dominating set of \(L(G) \), if every vertex not in \(D \) is adjacent to a vertex in \(D \) of \(L(G) \). The domination number of \(L(G) \) is denoted by \(\gamma[L(G)] \) is the minimum cardinality of a dominating set. A set \(D^d \) subset of \(V[L(G)] \) is called a double dominating set of a \(L(G) \) if
every vertex in $V[L(G)]$ is dominated by at least two vertices in S. Or a subset D^d of $V[L(G)]$ is a double dominating set of $L(G)$ if for every vertex $v \in V[L(G)]$, $|N[v] \cap D^d| \geq 2$, that is v is in D^d and has at least one neighbour in D^d or v is in $V[L(G)] - D^d$ has at least two neighbours in D^d and is denoted by $\gamma_{ddl}(G)$. In this paper, many bounds on $\gamma_{ddl}(G)$ were obtained in terms of vertices, edges of G but not the member of $L(G)$. Also we establish line double domination of a line graph and express the results with other different domination parameters of G.

We need the following Theorem to prove our further results.

Theorem A[1]: Let G be a graph with $diam(G) = 2$ then $\gamma_v(G) \leq \Delta(G) + 1$.

Theorem B[4]: If G is a graph without isolated vertices and $p \geq 3$ then $\gamma_{ss}(G) = \alpha(G)$.

Theorem C[4]: A non split dominating set D of G is minimal if and only if for each vertex $v \in D$ there exist a vertex $u \in V - D$ such that $N(u) \cap D = \{v\}$.

Theorem D[2]: For any connected (p, q) graph G, $\chi(G) \leq \Delta(G) + 1$.

Theorem E[3]: For any connected (p, q) graph G, $\frac{diam(G)}{3} \leq \gamma(G)$.

Observation 1: For any connected (p, q) graph G, $p - \gamma_{ddl}(G) \leq 1$.

2. Upper Bound for $\gamma_{ddl}(G)$:

We shall establish the upper bound for $\gamma_{ddl}(G)$ in terms of the vertices of G.

Theorem 1: For any connected (p, q) graph G, $\gamma_{ddl}(G) \leq p - 1$. Equality holds for P_3, C_3, C_4, C_5.

Proof: Suppose D^d is a double dominating set of $L(G)$. Then by definition of double domination, $|V[L(G)]| \geq 2$. Further by observation, $p - \gamma_{ddl}(G) \geq 1$. Clearly it follows that $\gamma_{ddl}(G) \leq p - 1$. Suppose G is isomorphic to P_3, C_3, C_4, C_5. Then in this case $|D^d| = p - 1$.

In Theorem 2, the upper bound for $\gamma_{ddl}(G)$ shall be expressed in terms of $\gamma(G)$ and vertices of G.

Theorem 2: For any connected (p, q) graph G, $\gamma_{ddl}(G) + diam(G) \leq p + \gamma(G)$.

Proof: Let $I = \{e_{x_1}e_{x_2}, e_{x_3}, ..., e_{x_n}\}$ subset of $E(G)$ be the minimal set of edges which constitutes the longest path between any two distinct vertices $u, v \in V(G)$ such that $d_{st}(u, v) = diam(G)$. Furthermore let $D = \{v_1, v_2, ..., v_k\}$ be any minimal dominating set of G and let $E = \{e_{x_1}, e_{x_2}, ..., e_{x_n}\}$ be the set of edges of G.

Now by definition of $L(G), E(G) = V[L(G)]$. Let $D^d = \{u_1, u_2, ..., u_k\}$ be the double dominating set of $L(G)$ such that $|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d$. It follows that $|D^d| = d_{st}(u, v) \leq p \cup |D|$ and hence $\gamma_{ddl}(G) + diam(G) \leq p + \gamma(G)$.
Theorem 3: For any connected \((p, q) \) graph \(G, \gamma_{dd}(G) \leq q \).

Proof: Suppose \(H = \{u_1, u_2, \ldots, u_n\} \) be the subset of \(V[L(G)] \) and \(\deg(u_i) \forall u_i \in H \) has at least two. Then \(D_1 \) is subset of \(H \) form a minimal dominating set of \(L(G) \). Further if \(I = \{u_1, u_2, \ldots, u_n\} \) be the set all end vertices in \(L(G) \), then \(I \cup H = D \), where \(H \subseteq H \) form a double dominating set of \(L(G) \) such that \(|N[u] \cap D| \geq 2 \forall u \in V[L(G)] - D \). Since \(V[L(G)] = E(G) = q \), it follows that \(|D| \leq q \). Hence \(\gamma_{dd}(G) \leq q \).

Theorem 4: For any connected \((p, q) \) graph \(G, \gamma_{dd}(G) + \gamma[L(G)] \leq p + 2 \).

Proof: Let \(D \) be the minimal dominating set of \(G \). Now in \(L(G) \), if \(F = \{u_1, u_2, \ldots, u_n\} \) be the set of all end vertices in \(L(G) \), then \(F \cup H = D \), where \(H \subseteq V[L(G)] - F \). F forms a double dominating set of \(L(G) \), such that \(|N[u] \cap D| \geq 2 \forall u \in V[L(G)] - D \). Since each vertex in \(L(G) \) corresponds to the edges of \(G \) and each edge in \(G \) is incident to two vertices of \(G \), it follows that \(|D| \leq p \). Hence \(\gamma_{dd}(G) + \gamma[L(G)] \leq p + 2 \).

Theorem 5: For any connected \((p, q) \) graph \(G, \gamma_{dd}(G) \leq p \).

Proof: Let \(D \) be any minimal dominating set of \(G \). Further let \(E = \{e_1, e_2, \ldots, e_n\} \) be the set of all edges which are incident to the vertices of \(G \). Now by definition of line graph, \(V[L(G)] = E(G) \). Suppose \(I = \{u_1, u_2, \ldots, u_i\} \) be the set of all end vertices in \(L(G) \), then \(I \cup H = D \), where \(H \subseteq F \) subset of \(F \), forms a double dominating set of \(L(G) \) such that \(|N[u] \cap D| \geq 2 \forall u \in V[L(G)] - D \). Clearly \(|D| = |I \cup H| \leq p \). It follows that \(\gamma_{dd}(G) \leq p \).

Theorem 6: For any connected \((p, q) \) graph \(G, \gamma_{dd}(G) + \chi(G) \leq p + \Delta(G) \).

Proof: By Theorem 1 and by Theorem 3, clearly it follows that \(\gamma_{dd}(G) + \chi(G) \leq p + \Delta(G) \).

Theorem 7: For any connected \((p, q) \) graph \(G, \gamma_{dd}(G) + \gamma(G) \leq p + \left\lceil \frac{\Delta}{2} \right\rceil \).

Proof: Let \(B = \{v_1, v_2, \ldots, v_n\} \) be the minimum set of vertices which covers all the edges of \(G \) such that \(|B| = \alpha(G) \). Further \(D \) be a \(\gamma \)-set of \(G \). Let \(E = \{e_1, e_2, \ldots, e_n\} \) be the set of all edges of \(G \).

Now by definition of line graph \(L(G), E(G) = V[L(G)] \). Suppose \(I = \{u_1, u_2, \ldots, u_n\} \) be the set of all end vertices in \(L(G) \), then \(|I \cup H| = D \), where \(H \subseteq F \), forms a double dominating set of \(L(G) \) such that \(|N[u] \cap D| \geq 2 \forall u \in V[L(G)] - D \). It follows that \(2|H \cup I \cup D| - |B| \leq 2p \) and hence \(\gamma_{dd}(G) + \gamma(G) \leq p + \left\lceil \frac{\Delta}{2} \right\rceil \). Suppose \(G \) is isomorphic to \(C_4 \). Then in this case, \(|B| = 2 \) and \(\alpha(G) = 2 = \alpha(G) \).

Clearly, \(\gamma_{dd}(G) + \gamma(G) \leq p + \left\lceil \frac{\Delta}{2} \right\rceil \).
Theorem 8: For any connected \((p, q)\) graph \(G\), \(\gamma_{dd}(G) \leq \gamma_5(G) + \gamma_2(G)\).

Proof: By Theorem 12 and Theorem 13 the result follows.

3. Lower Bound for \(\gamma_{dd}(G)\):

Theorem 9: For any connected \((p, q)\) graph \(G\), \(\gamma_{dd}(G) \leq \gamma_5(G)\).

Proof: Let \(D = \{v_1, v_2, \ldots, v_m\}\) be any minimal dominating set of \(G\) and let \(F = \{e_1, e_2, \ldots, e_i\}\) be the set of edges which are incident with the vertices of \(G\). Now by the definition of \(L(G)\),

\[F \subseteq V[L(G)]. \]

Clearly \(D^d = \{u_1, u_2, \ldots, u_h\} \subseteq F\) in \(L(G)\) forms the double dominating set of \(L(G)\) such that

\[|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d. \]

Further, suppose \(C = \{v_1, v_2, \ldots, v_n\}\) be the set of all non end vertices in \(G\), then there exists at least one vertex \(v\) of maximum degree \(\Delta(G)\) in \(C\), such that \(|D^d|, \Delta(G) \geq p\). It follows that \(\gamma_{dd}(G) \geq \frac{p}{\Delta(G)}\).

Theorem 10: If every non end vertices of a tree is adjacent to at least one end vertices, then \(\gamma_{dd}(G) \geq p - m\). Where \(m\) is the number of end vertices in \(T\).

Proof: Let \(T^\prime\) be a tree. If \(diam(T^\prime) \geq 3\) and \(S = \{v_1, v_2, \ldots, v_m\}\) be the set of all end vertices of \(T^\prime\) with \(|S| = m\) and \(d(v_i) = 1\) \(\leq i \leq m\). Let \(E = \{e_1, e_2, \ldots, e_i\}\) be the edge set of \(T^\prime\). Now by the definition line graph \(L(G)\), \(E(G) = V[L(G)]\). Suppose \(I = \{u_1, u_2, \ldots, u_h\}\) be the set of all end vertices in \(L(G)\), then \(I \cup H = D^d\)

where \(H \subseteq E\), forms a double dominating set of \(L(G)\) such that \(|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d\). Since for any tree \(T, q = p - 1\), it follows that \(|D^d| \geq p - |S|\) and hence, \(\gamma_{dd}(G) \geq p - m\).

Theorem 11: For any connected \((p, q)\) graph \(G, \gamma_{5}(G) \leq \gamma_{dd}(G)\).

Proof: Let \(v \in V(G)\) and \(\deg(v) = \delta(G)\). Since \(diam(G) = 2\), then by Theorem A the dominating set \(D, |D| \leq \delta(G) + 1\). Therefore, \(\gamma_{5}(G) \leq \delta(G) + 1\). Suppose for any connected graph with \(diam(G) \geq 2\), again by Theorem A, \(|D| \geq \delta(G) + 1\). Hence \(\gamma_{5}(G) \geq \delta(G) + 1\). Now let \(D^d\) be a double dominating set of \(L(G)\) such that \(|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d\). Again by Theorem A, \(|D^d| \geq \delta[L(G)] + 2\). Clearly it follows that \(\gamma_{dd}(G) \geq \delta[L(G)] + 2\). Hence \(\gamma_{5}(G) \leq \gamma_{dd}(G)\).

Theorem 12: For any connected \((p, q)\) graph \(G, \gamma_{5}(G) \leq \gamma_{dd}(G)\).

Proof: Let \(S\) be a maximum independent set of vertices in \(G\). Then there exists a set \(S_1\) subset of \(S\) such that \(S_1\) has at least two vertices and every vertex in \(S_1\) is adjacent to some vertex in \(V - S_1\). Hence \(V - S_1\) is a split dominating set of \(G\). Therefore \(|V - S_1| \leq |S|\). Hence \(\gamma_{5}(G) \leq \beta_0\). Now let \(D^d\) be a double dominating set in \(L(G)\) such
that $|N[u] \cap D| \geq 2 \forall u \in V[L(G)] - D^d$. Since $E(G) = V[L(G)]$, and let S^I be a maximum independent set of $L(G)$. Then every vertex in S^I is adjacent to some vertex in $V[L(G)] - D^d$, such that $|N[v] \cap S^I| \geq 1 \forall v \in V[L(G)]$. Clearly, $|N[v] \cap S^I| \leq |N[v] \cap D^d|$ it follows that $\beta_0[L(G)] \leq \gamma_{ddl}(G)$.

Hence $\gamma_0(G) \leq \gamma_{ddl}(G)$.

Theorem 13: For any connected (p, q) graph G, $\gamma_{sd}(G) \leq \gamma_{ddl}(G)$.

Proof: Let ψ be a vertex of maximum degree $\Delta(G)$. Then ψ is adjacent to $N(\psi)$ vertices such that $\Delta(G) = N(\psi)$. Hence $V - N(\psi)$ is a dominating set. Let D be a connected dominating set of G such that $D \leq V - \Delta(G)$. Therefore $|D| \leq |V - N(\psi)|$. Hence $\gamma_0(G) \leq p - \Delta(G)$. Now, let D^d be a double dominating set of $L(G)$ such that $N[v] \cap D^d | \geq 2 \forall u \in V[L(G)] - D^d$. Also $D^d \geq V - \Delta(L(G))$. Therefore $|D^d| \geq |V - \Delta(G)|$. it follows that $\gamma_{ddl}(G) \geq p - \Delta[L(G)]$.

Hence $\gamma_0(G) \leq \gamma_{ddl}(G)$.

Theorem 14: For any connected (p, q) graph G, $\gamma_{sd}(G) \leq \gamma_{ddl}(G)$.

Proof: Let S be a maximum independent set of vertices in G. Then $V - S$ is a strong split dominating set of G.

Since S is maximum, $V - S$ is minimum. Thus $\gamma_{sd}(G) = \alpha_0(G)$. Now let D^d be a double dominating set in $L(G)$.

Since $E(G) = V[L(G)]$, let S^I be a maximum independent set of $L(G)$. Then $V[L(G)] - S^I$ is minimum and $|V[L(G)] - S^I| \leq |D^d|$. Clearly it follows that $\alpha_0[L(G)] \leq \gamma_{ddl}(G)$. Hence $\gamma_{sd}(G) \leq \gamma_{ddl}(G)$.

Theorem 15: For any connected (p, q) graph G, $\gamma_{ns}(G) \leq \gamma_{ddl}(G)$.

Proof: By Theorem[4], a non-split dominating set D of G is minimal if and only if for each vertex $u \in V - D$ such that $N(u) \cap D = \{v\}$. Therefore $|N(u) \cap D| = 1$. Now let D^d be a double dominating set of $L(G)$ such that $|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d$. From the above, if for each vertex $v \in D^d$ then there exists a vertex $u \in V - D^d$ such that $N(u) \cap D = \{v_i, v_j\}$ for $i \neq j$ and $1 \leq i, j \leq m$. Therefore $|N(u) \cap D| = 2$. It is clear that $|N(u) \cap D| \leq |N(u) \cap D^d|$. Hence $\gamma_{ns}(G) \leq \gamma_{ddl}(G)$.

Theorem 16: For any connected (p, q) graph G, $\gamma_{ns}(G) \leq \gamma_{ddl}(G)$.

Proof: Let $E = \{e_{i_1}, e_{i_2}, ..., e_{i_n}\}$ be the set of edges of G. Let $D = \{v_1, v_2, ..., v_k\}$ be any minimal dominating set of G such that for every vertex $u \in V(G) - D$ such that $|N[u] \cap D| \geq 1$. Now by definition of $L(G)$, $V[L(G)] = E(G)$, let $D^d = \{u_1, u_2, ..., u_n\}$, $1 \leq l \leq n$, in $L(G)$, forms the double dominating set of $L(G)$, such that $|N[u] \cap D^d| \geq 2 \forall u \in V[L(G)] - D^d$. It follows that $|D| \leq |D^d|$ and

www.tjprc.org
hence \(y(G) \leq y_{da}(G) \).

Theorem 17: For any connected \((p, q)\) graph \(G, \left\lfloor \frac{\text{diam}(G)}{3} \right\rfloor \leq y_{da}(G)\).

Proof: By Theorem [8] and Theorem [16] the result follows.

REFERENCES

2. F. Harary, “Graph Theory”, Adison Wesley, Reading Mass (1972)