WIRELESS TECHNOLOGY TO MONITOR REMOTE PATIENTS-A SURVEY

NIRMALA S GUPTHA, THANUJA K & KIRAN KUMARI PATIL
Reva Institute of Technology and Management, Bangalore, Karnataka, India

ABSTRACT

Remote patient monitoring (RPM) is a technology to enable monitoring of patients outside of conventional clinical settings (e.g. in the home), which may increase access to care and decrease healthcare delivery costs. There is a lack of timely access to necessary healthcare in remote areas, especially in India. While RPM technology can be used for disease management, it also reduces the risk of hospital readmissions. The use of cable-free communications between distributed and small sensor devices in healthcare application offers many advantages to monitor people and their surrounding physical environment. In this paper we present a comparative analysis of wireless technologies for healthcare monitoring in heterogeneous Wireless Sensor Network (WSN) context. The study presents analysis on how to choose the suited technology taking into account the application requirements. The choice depends on some criteria like delay and quality of service requirements. This paper gives advantages and drawbacks and compares standardized and proprietary wireless technologies.

KEYWORDS: Remote Healthcare Monitoring (RPM), Wireless Technologies, Wireless Sensor Networks (WSN), Body Sensors, Energy, Quality of Service, Performance Analysis

1. INTRODUCTION

Over the past decade, advances in wireless communication, sensor design and energy storage technologies have meant that the concept of a truly pervasive Wireless Sensor Network (WSN) is rapidly becoming a reality [1, 2]. Incorporating RPM in chronic disease management can significantly improve an individual’s quality of life. It allows patients to maintain independence, prevent complications, and minimize personal costs [3]. RPM facilitates these goals by delivering care right to the home. In addition, patients and their family members feel comfort knowing that they are being monitored and will be supported if a problem arises. This is particularly important when patients are managing complex self-care processes such as home hemodialysis [4]. The need for wireless mobility in healthcare facilitates the adoption of RPM both in community and institutional settings. The time saved as a result of RPM implementation increases efficiency, and allows healthcare providers to allocate more time to remotely educate and communicate with patients [5]. Low cost, low power and small sensors with multifunctional sensing modalities share their knowledge to achieve common goals. These sensors can be used for continuous sensing data from targets and communicate between each other wirelessly to reach a supervisor. Their deployment at home depends on the network topology. Sensors may be embedded on the person’s body to build a Wireless Body Area Network (WBAN) [6] allowing to sense different kinds of vital signs: ECG (Electrocardiogram), EEG (Electro-Encephalography), pulse, temperature, etc. In order to supervise and control the surrounding physical environment (home, etc.), other sensors can be deployed including infrared sensors, multimedia sensors (cameras), smoke sensors, etc. Thus, the structure of the transmitted data can be as different as video and audio streams. Multimedia contents are exchanged over the Wireless Multimedia Sensor Network (WMSN). These contents need
more requirements than those in traditional WSNs, including QoS, energy, and high bandwidth, multimedia source coding techniques, processing, and other needs discussed in [1]. Energy and media transmissions came in the first level of factors influencing a WSN design for healthcare monitoring. A sensor node loses maximum energy in data communication (transmission and reception) then data processing and sensing [1]. Today, many wireless medium enable links between sensors, including: radio, infrared and optical transmission media. The aim of this paper is to focus on selecting wireless communication technologies optimizing the factors listed above.

India’s healthcare provision for patients with chronic diseases has many challenges: Currently, people with chronic diseases need continuous health monitoring and frequent hospital visits, this is expensive and exhausting. The rises in chronic disease have increased the demand for hospitals beds, taking resources that are sorely needed for emergency care. As most highly educated health professionals do not what to stay in the remote areas, most hospitals are in cities, so rural areas are not receiving sufficient healthcare. People in rural areas usually cannot travel such distances frequently due to being ill and lack of finances. Unlike many other countries, India’s patients with chronic diseases living in the remote areas lack access the necessary healthcare facilities at the right times [7].

The reminder of this paper is organized as follows. In section II Healthcare monitoring requirements are presented and WPAN technologies are described along with their advantages and drawbacks. In section III, we take a step back to compare these technologies and address recommendations according to heterogeneous three tier architecture, section IV Technological Components, section V System Architecture, section VI Applications and Section VII Recent Trends in Remote monitoring System. The last section gives conclusions and future directions.

2. HEALTHCARE MONITORING REQUIREMENTS

Healthcare Requirements

Performance criteria of WSN in healthcare monitoring include: energy consumption, QoS requirements, wireless links reliability, network throughput, etc. Below we summarize some of these criteria:

- **Quality of Service QoS**: is one of the most important aspects. It should be considered especially to transmit multimedia con-tents such as video streams and still images (localization, fall of person, etc.). The QoS is related to the bandwidth allocation, delay of transfer, jitter, and packet error rate parameters.

- **Energy Consumption**: it is a crucial factor impacting the network lifetime. It has certainly not the same impact as in very dense WSN. However, the less energy consumed by the nodes, the longer the network lifetime will satisfy the application running [15].

- **Scalability**: a good WSN solution has to be scalable and adaptable to future changes in the network topology. Thus, scalable protocols should perform well as the network grows larger or as the workload increases.

Furthermore, in order to control human behavior and to monitor physiological parameters with respect to the performance criteria, research has identified several requirements that must be satisfied. These requirements are:

- **Mobility**: managing persons and sensors mobility to maintain the network connectivity.

- **Home Constraints**: the deployment of the WSN depends on characteristics of the building where the patients are located (architecture, size, walls, building materials, etc.).
Wireless Technology to Monitor Remote Patients-A Survey

- **Radio Bandwidth**: when the number of nodes exceeds a certain threshold it may overload the network capacity. Bandwidth limitations depend also on the type of transmission media and on the kind of the transmitted data (multimedia content or simple data).

- **Specific Protocols**: the aim is to develop efficient medium access and routing techniques in terms of energy and delay delivery, and to provide self-organizing protocols with secured transfer (privacy and reliability of urgent information).

- **Heterogeneity**: WSN solution design requires taking into account the heterogeneity of hardware and software (operating systems, control and management tools, etc.).

Choice of WPAN Technologies

The choice of communication media is one of many factors those influence the design of WSN. There are many technologies; some of them are standardized and others are proprietary [15]. Below we describe the most popular ones that cover small areas (WPAN). Table 1 summarizes the different features in later page.

Standardized Technologies

- **IEEE 802.15.1 / Bluetooth**: At the beginning, this standard [16] was proposed to transmit voice and data. The topology of a Bluetooth network is composed of slaves and masters. There are only seven active slaves per Pico net, and 10 Pico nets max per Scatter net. Bluetooth is not suitable for WSN or very little used due to the high energy consumption, the high cost of synchronization and the complex network topology.

- **Wibree (Ultra Low Power Bluetooth)**: Is considered as a light Bluetooth and operates at 2.4 GHz frequency band. It is expected that Wibree does not use frequency hopping. It supports a star network topology with one master and seven slave nodes [23]. To reduce power consumption of Bluetooth, Wibree uses low transmission power and low symbol rate. According to Nokia, Wibree can reduce the power consumption of Bluetooth to one tenth. Wibree may have a common RF part of Bluetooth making its integration into sport watches, cellular phones and laptop computers easier. Its principle limitation is the short range: 5-10 m.

- **IEEE 802.15.3 / UWB**: It uses radio signals sent with very low intensity and very short pulses [8]. It operates at 3.1 GHz frequency band. UWB comes to replace Bluetooth (to offer more bandwidth, limited interference to coexist with other technologies, and shorter delay). Currently, two UWB standards exist: UWB Forum and WiMedia Alliance. UWB is used to enable high-speed transmissions with low power consumption (near to 400 mW). This technology offers more advantages than Bluetooth. It requires 50 times less energy to transmit one bit than Bluetooth. It offers also accurate localization services in the order of centimeter. According to [25], the IEEE 802.15.3 standard has become the most interesting candidate to provide QoS in WMSNs. The major drawback of UWB is its short communication range (about 10 and the high synchronization constraint.

- **IEEE 802.15.4 / Zigbee**: Zigbee operates above IEEE 802.15.4 compliant transceiver (Physical and MAC layers with some dedicated upper layers). It is used in very low power communications with short distances. This technology is used in wireless sensor networks. Regarding to energy consumption, it was shown in [2] that in some scenarios, in the case of non slotted access with “CSMA/CA: Carrier Sense Multiple Access with Collision

www.tjprc.org
Avoidance”, less than 50% of energy is consumed in data transmission, 25% in listening to the medium and 15% for waiting acknowledgment. Compared to Bluetooth, this technology provides a low latency (the physical layer “DSSS: Direct Sequence Spread Spectrum” allows nodes to switch to sleep mode without losing synchronization). It provides simple forms of guaranteed QoS. Its main limitation is the low data rate to be used in multimedia applications [25].

Proprietary WPAN Technologies

ANT

ANT is developed by Dynastream Innovation. It operates at 2.4 GHz frequency band. It provides communications at very low power consumption. ANT is designed to operate in WSN networks with low data rate and short ranges [9]. The medium access method used is TDMA. Header-frames are reduced at 7 bytes instead of 15-35 bytes in IEEE 802.15.4. It supports two kinds of topologies: peer to peer and star (master-slave). ANT is less popular than IEEE 802.15.4.

One Net

One Net is a new proprietary open source wire-less control protocol designed for low power and high range WSN applications such as control and building automation. It operates at 868 MHz (Europe) and 915 MHz (USA) frequency bands. Three kinds of topologies are supported: star, point to point, and mesh. In a star topology, a master node can be connected to 1-2000 slaves [10]. Among competitors of OneNet, we find IEEE 802.15.4 and Z-Wave. Its principle limitation is the low data rate (around 38.4 Kbps).

Z-Wave

Z-Wave can be considered as a light version of Zigbee operating at 868 MHz and 915 MHz frequency bands [11]. Z-Wave is targeted for the control of building automation and entertainment electronics. The maximum number of nodes in a network is 232. Supported network topologies are star and mesh. Some Z-Wave products are presented in [11]. However, it lacks further development kits to test its performances.

MiWi

MiWi developed by Microchip is a simple version of Zigbee operating above IEEE 802.15.4 compliant transceiver. MiWi is suitable for smaller networks having at most 1024 nodes. Supported network topologies are star and mesh. Simplification of the Zigbee stack reduces the cost of MCU by 40% – 60%. However, MiWi operates only in the non-beacon mode of IEEE 802.15.4. Hence, MiWi does not support the low duty-cycle mode of Zigbee.

Recently, a new version of Wi-Fi named Wi-Fi Low Power is proposed for sensor networks. It allows overcoming some drawbacks of Wi-Fi in term of energy consumption. This new version is adopted by some companies like: Aginova, Sensicast, STMicro-electronics (ST), Gainspan, Apprion, Mi-co Strain and Nivis [26]. However, as Z-Wave, it lacks currently development kits with multifunctional sensors, like those developed by Crossbow and Dust Networks companies that provide multimedia cards based on IEEE 802.15.4.

Currently development kits with multifunctional sensors, like those developed by Crossbow and Dust Networks companies that provide multimedia cards based on IEEE 802.15.4.

MICS (Medical Implant Communications Service) is a technology used in many works. Its advantages are presented in [4]. It operates between 402 and 405 MHz frequency bands (ten channels of 300 KHz). This band covers some
limits of IEEE 802.15.4 and Bluetooth in terms of energy consumption and data rate for WBANs. However, this technology has shorter communication range than IEEE 802.15.4.

Currently, an evolution to 60 GHz networks is appeared. These networks provide more advantages in terms of band-width, QoS, energy conservation, and reduced interferences. WirelessHD technology is an example [14]. It proposes low power and low cost solutions to transfer video streams with QoS. However, its range is limited to 10 m.

In this section we discussed on the most popular standardized and proprietary WPAN technologies. Other technologies for healthcare exist [25, 26] like: IEEE 802.15.6, Rubee (IEEE 1902), IETF 6lowPAN, IrDA, WUSB, RFID, Wavenis (Coro-nis), Addinet (Alciom), WirelessHart, Sensium and Insteon. In this section we presented the most used. In the next section, we discuss the suited technology for our application.

- On Table 1: Comparison between Wireless Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>WPAN Technologies</th>
<th>WSN</th>
<th>Proprietary Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.15.4</td>
<td>ZigBee</td>
<td>Bluetooth</td>
<td>UWB</td>
</tr>
<tr>
<td>Standards</td>
<td>IEEE 802.15.4</td>
<td>IEEE 802.15.4</td>
<td>IEEE 802.15.4</td>
</tr>
<tr>
<td>Frequency</td>
<td>2.4 GHz</td>
<td>2.4 GHz (9 channels)</td>
<td>5 GHz (10 channels)</td>
</tr>
<tr>
<td>Speed</td>
<td>2.5 Mbps (6 channels)</td>
<td>100 Mbps (4 channels)</td>
<td>11 Mbps</td>
</tr>
<tr>
<td>Max Range</td>
<td>100 m (2.4 GHz)</td>
<td>500 m (5 GH)</td>
<td>110 m</td>
</tr>
</tbody>
</table>

Table 1: Comparison between Wireless Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>WirelessHD</th>
<th>WiFi Direct</th>
<th>60 GHz</th>
<th>60 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.15.6</td>
<td>FDD</td>
<td>FDD</td>
<td>FD</td>
<td>FD</td>
</tr>
<tr>
<td>Rubee (IEEE 1902)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6lowPAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IrDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WUSB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavenis (Coro-nis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addinet (Alciom)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WirelessHart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insteon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. WSN DESIGN FOR HEALTHCARE MONITORING

Many solutions were proposed to monitor specific environmental applications with heterogeneous sensors.
However, the healthcare monitoring at home is much more complex because of specific home constraints and people habits described above. Energy and delay are ones of the most critical performance criteria for healthcare. To present a comparative analysis we need to define preliminary the sensor network scenario then we discuss about the network performance.

System Description and Assumptions

Each scenario has its specific requirements. Our recommendation is to study the global network among three levels [27]. We distinguish a lower level representing the mobile WBAN (including all physiological embedded sensors like temperature, pulse, etc.), a level describing the WMSN with fixed multimedia Beacon nodes (environmental sensors and camera), and the higher level that represents the Supervisor/sink (remote medical assistance, physician, etc.). We assume a hierarchical and centralized deployment of heterogeneous sensors with distributed sensing, processing and storage (some nodes are gathering data and others just manage/forward data through multi-hop communications toward the sink). The network is composed of four groups of nodes: Medical (M), Coordinator (C), Beacons (B), and Sink (S). All nodes are in the same range. Two kind of traffic is enabled: sporadic (case of alarms triggered by M/B) and periodic (send medical and environmental data). Some configurations of hybrid architectures and their benefits for healthcare are described in our previous work in [28]. Indeed, a multi-tier architecture provides better balance among scalability, cost, coverage, and reliability requirements than single tier architecture as described in [29].

The system provides local and remote access to the collected data ((C) and (S) nodes). Making good use of energy and delay is a must in this network scenario. The energy constraint influences on the topology re-organization while the delay is a critical factor required be minimal (sending urgent data toward the sink). Thus, the selection of the wireless technology should take into account these important metrics.

DISCUSSIONS

Wireless technologies VS home requirements: The choice of a wireless technology depends on the services offered and the needs of a network designer. Parameters such as: power, security and the number of supported nodes must be taken into account. We discuss below the relationship between these parameters and the needs of the application.

As described in the previous section, data rate and network capacity are among parameters having an impact on the network performances. The choice of a high data rate wireless technology can offer more advantages that meet network scalability and increasing the number of monitored persons. In contrast, some wireless technologies offer low power consumption but result significant delays and/or low data rate. The technology chosen will have to provide a compromise between data rate and energy consumption.

- The coexistence of different technologies might be judicious to allow the transfer of heterogeneous contents through the network. As we can see in Table 1, the IEEE 802.15.4 and IEEE 802.15.3 technology offers the best compromise for energy consumption in this application domain. Zigbee technology may be considered for the transmission of medical data with low power consumption and low data rate. UWB technology can be considered to provide services for localization and transfer of multimedia content via video nodes, with less interference, low jitter and a low error rate.
Recommendation: According to this study, we retain that the technologies that best adapt to our application are IEEE 802.15.4 and UWB. However, the IEEE 802.15.4 standard offers more communication range, less power consumption, and supports greater number of nodes than UWB. In addition, the data rate is acceptable (250 Kbps). This technology is widely used in many works [15]. IEEE 802.15.4 devices are the cheaper ones and provide solutions about data security.

As we can see, a generic network does not exist actually and we think that in the design phase, modeling the global network is necessary to apprehend all data exchanges, and to validate the best architecture of the system. In [5, 17] we proposed a design framework for healthcare with a detailed description of sensors behaviors and inter-sensors communications.

IV. TECHNOLOGICAL COMPONENTS

The diverse applications of RPM lead to numerous variations of RPM technology architecture. However, most RPM technologies follow a general architecture that consists of four components [17].

- Sensors on a device that is enabled by wireless communications to measure physiological parameters
- Local data storage at patients’ site that interfaces between sensors and other centralized data repository and/or healthcare providers
- Centralized repository to store data sent from sensors, local data storage, diagnostic applications, and/or healthcare providers
- Diagnostic application software that develops treatment recommendations and intervention alerts based on the analysis of collected data
- Depending on the disease and the parameters that are monitored, different combinations of sensors, storage, and applications may be deployed

V. SYSTEM ARCHITECTURE

If the patient’s condition is more stable, the frequency of data collection will be less, therefore power reductions can be. This system collects sensor data from the body sensors of the patient, stores, and processes and transmits the data to the central database server situated in the hospital. It also issues warning messages to doctors, relatives etc. Wireless body sensors sense and transmit health information such as ECG and Blood Pressure from the patient, based on the risk level assigned by the health professional. The mobile software in the patient’s smartphone is able to receive the sensor data transmitted by the body sensors using Bluetooth. The system temporarily stores the received data in the smartphone, using a SQLite database. SQLite database is used because of its high security capability as confidentiality is of the utmost importance in healthcare.

Once received data is stored in SQLite, a first level analysis of the data is done based on the analysis algorithm. If the smartphone analysis shows any abnormality, then a warning message will be send to the health professional’s Phone. Also the stored data will be retrieved from the SQLite Data base and transmitted the entire data to the central database server situated in the hospital. If the patient’s condition is more stable, if the smart phone analysis shows normal then
transmission of data to the central server will only occur when the buffer becomes full. A web server is used, between the patient’s mobile phone and the centralized database server. This web server helps to save the data, to the database server located in the hospital. The system architecture is shown in the figure 1.

In health professionals mobile warning message will receive as simple messaging services. The mobile software in the doctor’s phone helps to view a patient’s ECG report on his mobile phone, by selecting the patients name and patient id.

![Figure 1: System Architecture](image)

Then a request will be sent to the central database server through the web server for retrieving the sensor data for that particular patient based on his name and patient id. When the web server receives the doctor’s request, it will retrieve the data from the central server database and transmit back it to the doctor’s mobile phone. This mobile software provides a User Interface for viewing the ECG and Blood pressure in his smartphone. The doctor can also assign risk levels of each patient from his phone itself.

VI. APPLICATIONS

Physiological data such as blood pressure and subjective patient data are collected by sensors on peripheral devices. Examples of peripheral devices are: blood pressure cuff, pulse oximeter, and glucometer. The data are transmitted to healthcare providers or third parties via wireless telecommunication devices. The data are evaluated for potential problems by a healthcare professional or via a clinical decision support algorithm, and patient, caregivers, and health providers are immediately alerted if a problem is detected [18]. As a result, timely intervention ensures positive patient outcomes. The newer applications also provide education, test and medication reminder alerts, and a means of communication between the patient and the provider [18]. The following section illustrates examples of RPM applications, but RPM is not limited to those disease states.

Diabetes

Diabetes management requires control of multiple parameters: blood pressure, weight, and blood glucose. The real-time delivery of blood glucose and blood pressure readings enables immediate alerts for patient and healthcare providers to intervene when needed. There is evidence to show that daily diabetes management involving RPM is just as effective as usual clinic visit every 3 months[19].
Congestive Heart Failure

A systematic review of the literature on home monitoring for heart failure patients indicates that RPM improves quality of life, shortens duration of stay in hospitals, decreases mortality rate, and reduces costs to the healthcare system [20].

Infertility

A recent study of a remote patient monitoring solution for infertility demonstrated that for appropriately screened patients who had been seeking In-Vitro Fertilization (IVF) treatment, a six-month remote monitoring program had the same pregnancy rate as a cycle of IVF [21]. The remote patient monitoring product and service used had a cost-per-patient of $800, compared to the average cost of a cycle of IVF of $15,000, suggesting a 95% reduction in the cost of care for the same outcome.

VII. RECENT TRENDS IN REMOTE MONITORING SYSTEM

The findings of an end-user market study focused on the current state of remote patient monitoring adoption by healthcare provider organizations across the United States. The report uncovers strong opinions regarding the market opportunities and challenges for deploying RPM solutions to reduce hospital readmissions, control healthcare delivery costs, and increase patient access to care.

Needs and requirements for remote patient monitoring include:

- Potential impact for deploying remote patient monitoring,
- Existing workflow inefficiencies in managing chronically ill patients, and
- Current telehealth/telemedicine initiatives.

CONCLUSIONS AND FUTURE WORKS

This paper is a survey towards Background theory, Healthcare monitoring requirements, Technological Components, System Architecture, Applications, and Recent Trends in Remote monitoring System required. As the future work we are planning to design a system by implementation by using wireless technology and ensuring that remotely monitoring system for the patient and helping the relatives and health care professionals for the better decision making by reducing the cost.

REFERENCES

9. 3G, Assisted-GPS Test Calls for 3G WCDMA Networks, http://www.3g.co.uk/PR/November2004/8641.htm

