SIZE DEPENDENCE OF H-SiNW ON BAND GAP ALONG [111] DIRECTION
SANNA KAUSAR & SHIRISH JOSHI
Department of Physics, Government M.V.M. College, Bhopal, Madhya Pradesh, India

ABSTRACT
In this work band gap of hydrogen-passivated, free-standing silicon nanowires, oriented along [111] direction with rectangular cross section was studied for different area of cross section. Further the effect of cross sectional area on band structure is also analyzed by DFT using GGA approximation. It is found that the band gap of H-SiNW are dramatically altered upon changing the cross sectional area.

KEYWORDS: DFT, GGA, Nanowire

INTRODUCTION
In the last few years quantum wires, or nanowires are studied both experimentally and theoretically. Semiconductor nanowires exhibit a variety of unique material properties, including mechanical flexibility, size-dependent optical and electronic properties, and solution processability. In particular, silicon nanowires (SiNWs) have been studied both theoretically [1] and experimentally [2] for a long time, and they have attracted much attention due to their applications in various fields, such as field-effect transistors [3-5], solar cells [7,8], and energy conversion devices [9,10], nanosensors [3,6]. While developing these applications, it is important to control the electronic properties of nanowires (NWs), which strongly depend on the diameter as well as the crystallographic orientation [11], cross sectional shape and optimized structure of the NWs [12]. There are several ways due to which band structure of SiNWs can change, for example, by changing cross sectional area, cross sectional geometry, orientation, surface morphology, dangling bond passivation, and doping [1,2]. Reduced dimensionality systems are characterized by a large surface-to-bulk ratio and offer the possibility of doping through the external adsorption of molecules [13] rather than the incorporation of substitutional impurities [14]. Álvaro Miranda [15] has studied NH$_3$ molecular doping of silicon nanowires grown along the [112], [110], [001], and [111] orientations. Sercel [23-25] studied cylindrical GaAs/A$_{0.3}$Ga$_{0.7}$As nanowires with infinite and finite barriers by using a four-band model using axial approximation. They have studied 1 nm radius nanowire in their calculations. More recent calculations for free-standing zinc-blende nanowires are less common. There have been calculations of nanowire band structures using the empirical tight-binding method. B. Lassen [27] has studied Electronic structure of free-standing InP and InAs nanowires. The nanowires are now mostly of the free-standing type: typical dimensions are tens of nanometers in lateral size and microns in length, although nanowires as small as 3 nm in diameter have been reported [16,17]. Not only cubic but wurtzite structure nanowires have been synthesized. They can be assumed to have low defect concentrations and close to bulk structure, few research studies have carried out on strained nanowires [18], a number of studies have already been made. polarized photoluminescence [19,20] and Raman scattering have been experimentally studied [21]. There were early calculations of the band structures of embedded nanowires using the $k\cdot p$ method. In 1989, Citrin and Chang [22] applied the six-band Luttinger-Kohn $k\cdot p$ to rectangular GaAs/Al$_{0.2}$Ga$_{0.8}$As nanowires, they observed that crossing behavior of the first two valence states in a square quantum wire becomes anti-crossing in a rectangular quantum [26,28]. There are also a few ab initio calculations now reported for InP nanowires [29,30] though only for the bandgap and not for the whole band structure. In this article we extend our earlier study in which we have studied the size dependent of band of silicon nanowire of triangular cross section.
along $[1 1 1]$ direction by implementing density functional theory using GGA, in this study size dependent of band of silicon nanowire of rectangular cross section along $[1 1 1]$ direction by implementing density functional theory using GGA.

Table 1

<table>
<thead>
<tr>
<th>Si</th>
<th>H</th>
<th>Lattice Parameters (Å)</th>
<th>Cell Angles</th>
<th>Cross Sectional Area (nm2)</th>
<th>Band Gap (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>22</td>
<td>a = 20.122136</td>
<td>alpha = 90.079268</td>
<td>.266</td>
<td>3.229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b = 19.944290</td>
<td>beta = 90.198734</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 9.513158</td>
<td>gamma = 90.198028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>30</td>
<td>a = 30.454426</td>
<td>alpha = 90.000000</td>
<td>.388</td>
<td>2.380</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b = 30.499196</td>
<td>beta = 89.836100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 9.621926</td>
<td>gamma = 89.999999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>38</td>
<td>a = 27.037097</td>
<td>alpha = 90.000000</td>
<td>.906</td>
<td>2.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b = 30.991761</td>
<td>beta = 89.750330</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 5.52908</td>
<td>gamma = 90.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Size Dependence of the Band Gap of SiNWs along $[1 1 1]$ Direction

SiNWs which have rectangular cross section was chosen with different cross sectional area and the electronic band structure of these SiNWs was studied by using DFT calculation. In this study The relation between size and electronic band structure of the SiNWs observed in detail. Silicon nanowire as a prototype was taken, and grown along $[1 1 1]$ direction. The ideal nanowire is cut initially from bulk Si crystal and, subsequently, the lattice constant c and all the atomic positions are fully optimized. Upon relaxation, the structure of the ideal bare nanowire reconstructed. Furthermore, to allow possible reconstructions involving two unit cells, structure optimization of an ideal nanowire was carried out. In the later optimization, the energy per Si atom and the atomic structure did not change from the single cell optimization. Table 1 lists the studied cases with the atomic numbers within them, the area of the cross section and band gap. The cross section of the nanowires are rectangular along $[111]$ SiNWs as displayed in Fig.1, Fig.2, Fig.3. The shape of the cross section was fixed and their size was increased gradually. The lattice constants along the chain axes were optimized, involving variations within 3.5%. Senger and coauthors[38] built the silicon chains as linear or zigzag chains with varying bond angle. In contrast, our focus is on the relationship between the area of cross section and band gap. The Top (upper) View of silicon nanowire is shown in along <111> direction. Yellow spheres stand for silicon atoms and white spheres for hydrogen. Hydrogen termination is used to eliminate the defect states within the band gap so that the band structure of the chain should briefly feature the characteristics of silicon. Between two neighboring chains there is a vacuum layer thicker than 4 Å for eliminating the inter-layer interaction. The structures of hydrogen-terminated silicon chains were modeled in supercells involving two primitive unit cells. We have performed first-principles plane wave calculations[31,32] within DFT [33] using ultrasoft pseudopotentials[32,34]. The exchange correlation potential has been approximated by generalized gradient approximation GGA using Perdew Burke Ernzerhof exchange correlation functional[35] both for spin-polarized and spin-unpolarized cases. For partial occupancies, we use the Methfessel-Paxton smearing method[36] The adopted smearing width is 0.1 eV for the atomic relaxation and 0.05 for the accurate band structure analysis and density of states calculations here total energy $/atom$ convergence tolerance is 0.1000E-05 eV. All structures have been treated within a super cell geometry using the periodic boundary conditions. The lattice constants of the tetragonal super cell in the x-y plane are taken as $asc=bsc=26$ Å and $csc=9.406$ Å along the z axis. For the double unit cell calculations, the lattice constant is taken as $csc=2c$ to prevent the interactions between the nearest neighbor impurity atoms located in adjacent cells. In the
self consistent potential and total energy calculations, the Brillouin zone of SiNW is sampled in the k space within the Monkhorst-Pack scheme\cite{37} by 1x1x40 mesh points as determined by the convergence tests. A plane wave basis set with kinetic energy 230 eV has been used. All atomic positions and lattice parameters are optimized by using the BFGS where total energy and atomic forces are minimized. The convergence or energy is chosen as 10^{-4} eV between two ionic steps, and the maximum force allowed on each atom is 0.3000E-01 eV/A. The band structures around the Fermi energy levels are displayed in Fig.1, Fig.2 and Fig.3 for [111], rectangular cross sectional nanowire. Note that for a SiNW with a larger diameter, the conduction band minimum increases differently at different K points. Upon passivation with H and subsequent optimization, most of the peak positions coincide with those of the ideal SiNW.

CONCLUSIONS

Our results show that area of cross section is important factors for determining band gap. Some of the parameters that characterize the electronic band structures are listed in TABLE-1. It has been found that the band gap of the SiNWs decreases as the diameter increases. A quantity relation, that the band gap is proportional to the reciprocal of the wire diameter was revealed, which directly supports the quantum effect in experiments as well as in theory. The gap width varied from 3.229 eV at .266nm2 to 2.031 eV at about .906nm2. The size dependence of the band gap revealed here is evidence for quantum confinement. As the periodicity was only along the wire axis, the movement of electrons was confined in the plane perpendicular with the wire.
Yellow sphere represents the silicon atom and white spheres represent hydrogen atoms. Right panel represents the energy band diagrams for the optimized hydrogenated silicon nanowires along [111] direction. The zero of energy is taken at the Fermi level axis. The band structure was folded, so that the energy bands near the Fermi energy level were modified seriously when the diameter of the SiNW was small. On the other hand, hydrogen termination makes the energy bands split deep in the valence bands or higher in the conduction bands. It is another but not the main reason that the band gap of the SiNWs is broadened. When the cross sectional area of the SiNW is large enough that time SiNWs will show the characteristics of the bulk silicon. In our calculations, the gap width is decreasing and converges with that of the crystalline silicon on increasing the cross sectional area.

REFERENCES

